

1

2

Decision theory

- Decision theory is an interdisciplinary area of study concerned with:
- 1. How decision-makers make decisions.
- 2. How optimal decisions can be reached.
- Decoding of neural information (and other types of encodings) relies heavily on decision theory.

Simple decision example

- Suppose that we know (via prior knowledge) that 25% of the newborns on April 1st are male and 75% are females.
- Our friend just had a newborn baby on that day but we forgot to ask about his/her gender. Should we buy the baby a pink or blue shirt?

(Yes, I know that colors don't matter but to this specific mother, they do)

■ Thus, we need to guess the value of the variable *X* reflecting the state of nature using the a priori probabilities.

4

Decision error

- Decision error → the probability of picking one possibility when the state of nature is different.
- The decision is done to minimize the error.
- In this example

 $P(error) = \begin{cases} \text{If we decide boy} \Rightarrow P(girl) \\ \text{If we decide girl} \Rightarrow P(boy) \end{cases}$

5

Simple decision example – adding features

- Some features may give us information about the state of nature.
- Assuming that we know the weight distribution of boys (blue) and girls (red) and the happy mother told us that the baby weighs 4Kg, which shirt should we bring?

6

Simple decision example – conditional probability

- Assuming that the weight is represented by the random variable Y. The distribution of the weights assuming the gender is described by the class conditional probability p(y|x)
- So now the question becomes: what is that probability of a specific gender given the weight → p(x|y) ???

7

Conditional probability

- When 2 variables are statistically dependent, knowing the value of one of them lets us get a better estimate of the value of the other one.
- This is expressed by the conditional probability of *x* given *y*:

$$P(x \mid y) = \frac{P(x, y)}{P(y)}$$

• If x and y are statistically independent, then $P(x \mid y) = P(x)$

8

Bayes' rule I

The law of total probability: If event X can occur in m different ways x₁, x₂,..., x_m and if they are mutually exclusive → the probability of X is the sum of the probabilities x₁, x₂,..., x_m.

$$P(y) = \sum P(x, y).$$

From the definition of conditional probability

$$P(x, y) = P(x \mid y)P(y) = P(y \mid x)P(x)$$

Bayes' rule II

$$P(x \mid y) = \frac{P(y \mid x)P(x)}{P(y)}$$

$$P(x \mid y) = \frac{P(y \mid x)P(x)}{\sum_{x} P(x, y)} = \frac{P(y \mid x)P(x)}{\sum_{x} P(y \mid x)P(x)}$$

posterior =
$$\frac{\text{likelihood} \times \text{prior}}{\text{evidence}}$$

10

Bayes' rule - continuous case

$$p(x \mid y) = \frac{p(x, y)}{p(y)}$$

■ The Bayes' rule for densities becomes:

$$p(x \mid y) = \frac{p(y \mid x)p(x)}{\int p(y \mid x)p(x)dx}$$

11

Bayes' rule - importance

- x is termed the cause & y is termed the effect.
 Assuming x is present, we know the likelihood of y to be observed
- Bayes' rule allows to determine the likelihood of a cause x given an observation y. Note: there may be many causes producing y.
- Bayes' rule shows how probability for x changes from prior p(x) before we observe anything, to posterior p(x| y) once we have observed y.

Bayes' decision rule

Decision:

 $boy: if \ P(boy|weight) > P(girl|weight)$

girl: otherwise

or

boy : if P (weight |boy)P(boy) > P(weight|girl)P(girl)

girl: otherwise

Error:

P(error | weight) = $\begin{cases} \text{If we decide boy} \Rightarrow P(girl \mid weight) \\ \text{If we decide girl} \Rightarrow P(boy \mid weight) \end{cases}$

P(error|weight) = min [P(boy|weight) , P(girl|weight)]

13

Loss function

- The problem arises when different decisions have different consequences (for example: pink shirt for a boy is less acceptable in many cultures than a blue one for a girt).
- Loss (or cost) function states exactly how costly each action is, and is used to convert a probability determination into a decision. Loss functions let us treat situations in which some kinds of classification mistakes are more costly than others.

14

Expected loss

- Suppose that we observe a particular ${\bf y}$ and that we contemplate taking action α_i .
- \blacksquare If the true state of nature is $\mathbf{x}_{\!j}$ the loss is $\lambda(\alpha_{\!\scriptscriptstyle i}\,|\,x_{\!\scriptscriptstyle j})$
- Before we have done an observation the expected loss is $R(\alpha_i) = \sum_{j=1}^{C} \lambda(\alpha_i \mid x_j) P(x_j)$
- After the observation the expected risk which is called now the conditional risk is given by
 - $R(\alpha_i \mid y) = \sum_{j=1}^{C} \lambda(\alpha_i \mid x_j) P(x_j \mid y)$

Bayes' decision rule

- Compute the conditional risk for each action $R(\alpha_i \mid y) = \sum_{j=1}^C \lambda(\alpha_i \mid x_j) P(x_j \mid y)$
- Select the action α_i for which $R(\alpha_i | y)$ is minimal.
- The resulting minimum risk is called the Bayes Risk, denoted R*, and is the best performance that can be achieved.

16

Optimal Bayes Decision Strategies

- A strategy or decision function α(y) is a mapping from observations to actions.
- The *total risk* of a decision function is given by $E_{p(y)}[R(\alpha(y)\,|\,y)] = \sum p(y) \cdot R(\alpha(y)\,|\,y)$
- A decision function is optimal if it minimizes the total risk. This optimal total risk is called Bayes risk.

17

Outline

- Bayesian decisions
- The Bayesian student
- The Bayesian doctor

18

The student dilemma

- A student needs to achieve a decision on which courses to take, based only on his first lecture.
- From his previous experience, he knows the prior probabilities

Quality of the course	good	fair	bad
$P(x_j) \rightarrow prior$	0.2	0.4	0.4

19

The student dilemma

■ The student also knows the class-conditionals:

$P(y x_j)$	good	fair	bad
Interesting lecture	0.8	0.5	0.1
Boring lecture	0.2	0.5	0.9

■ The loss function is given by the matrix

$\lambda(a_i x_j)$	good course	fair course	bad course
Taking the course	0	5	10
Not taking the course	20	5	0

20

The student dilemma

- The student wants to make an optimal decision of taking the course based on the first lecture.
- The probability of hearing an interesting lecture:

P(interesting)= P(interesting|good)* P(good) + P(interesting|fair)* P(fair) + P(interesting|bad)* P(bad) = 0.8*0.2+0.5*0.4+0.1*0.4 = 0.4

P(boring)= 1-P(interesting) = 1-0.4 = 0.6

Assuming that the lecture was interesting, what are the **posterior** probabilities of each of the 3 possible "states of nature"?

The student dilemma

$$\begin{split} &P(good\ course|interesting\ lecture)\\ &=\frac{P(interesting|good)Pr(good)}{P(interesting)} = \frac{0.8*0.2}{0.4} = 0.4 \end{split}$$

P(fair|interesting)

 $= \frac{P(interesting|fair)P(fair)}{P(interesting)} = \frac{0.5*0.4}{0.4} = 0.5$

 We can get P(bad|interesting)=0.1 either by the same method, or by noting that it complements to 1 the above two.

22

The student dilemma

■ The student needs to minimize the conditional risk.

$$R(\alpha_i \mid y) = \sum_{j=1}^{c} \lambda(\alpha_i \mid x_j) P(x_j \mid y)$$

In this case there are only two possible actions: taking or not taking the course.

R(taking|interesting)= P(good|interesting)\((taking course|good) +P(fair|interesting)\((taking course|fair) +P(bad|interesting)\((taking course|bad) = 0.4*0+0.5*5+0.1*10=3.5

R(not taking|interesting)=P(good|interesting)\(\)(not taking course|good)
+P(fair|interesting)\(\)(not taking course|fair)
+P(bad|interesting)\(\)(not taking course|bad)
=0.4*20+0.5*5+0.1*0=10.5

23

The student dilemma

- So, if the first lecture was interesting, the student will minimize the conditional risk <u>by</u> taking the course.
- In order to construct the full decision function, we need to define the risk minimization action for the case of boring lecture, as well.

Outline

- Bayesian decisions
- The Bayesian student
- The Bayesian doctor

25

The Bayesian Doctor Example

A person doesn't feel well and goes to the doctor. Assume two states of nature:

- x_1 : The person has a common flu.
- x_2 : The person has a vicious bacterial infection.

The doctors *prior* is: $p(x_1) = 0.9$ $p(x_2) = 0.1$

This doctor has two possible actions:

- a_1 = Prescribe hot tea.
- a_2 = Prescribe antibiotics.

The doctor can use prior and predict optimally: always flu.

Therefore doctor will always prescribe hot tea.

26

The Bayesian Doctor Example

- But there is very high risk: Although this doctor can diagnose with very high rate of success using the prior, (s)he can lose a patient once in a while.
- Denote the two possible actions:
 - a_1 = prescribe hot tea
- a₂ = prescribe antibiotics
- Now assume the following cost (loss) matrix:

$$\lambda_{i,j} = \frac{\begin{vmatrix} x_1 & x_2 \\ a_1 & 0 & 10 \\ a_2 & 1 & 0 \end{vmatrix}$$

The Bayesian Doctor Example

- Choosing a_1 results in expected risk of $R(a_1) = p(x_1) \cdot \lambda_{1,1} + p(x_2) \cdot \lambda_{1,2}$
 - $= 0 + 0.1 \cdot 10 = 1$
- Choosing a_2 results in expected risk of $R(a_2) = p(x_1) \cdot \lambda_{2,1} + p(x_2) \cdot \lambda_{2,2}$
 - $=0.9 \cdot 1 + 0 = 0.9$
- So, considering the costs it's much better (and optimal!) to always give antibiotics.

28

The Bayesian Doctor Example

- However, doctors can also produce some observations such as performing a blood test.
- The possible results of the blood test are:
 y₁ = negative (no bacterial infection)
 y₂ = positive (infection)
- Blood tests are never conclusive leading to the class conditional probabilities.

$$p(y_1 | x_1) = 0.8$$

$$p(y_2 | x_1) = 0.2$$

$$p(y_1 \mid x_2) = 0.3$$

$$p(y_2 | x_2) = 0.7$$

29

The Bayesian Doctor Example

- Define the conditional risk given the observation $R(a_i | y) = \sum_{\alpha} p(x_j | y) \cdot \lambda_{i,j}$
- We would like to compute the conditional risk for each action and observation so that the doctor can choose an optimal action that minimizes risk.
- How can we compute $p(x_j | y)$?
- We use the class conditional probabilities and Bayes inversion rule.

The Bayesian Doctor Example

The results of the blood test follow the probabilities:

$$p(y_1) = p(y_1 | x_1) \cdot p(x_1) + p(y_1 | x_2) \cdot p(x_2)$$

$$= 0.8 \cdot 0.9 + 0.3 \cdot 0.1$$

$$= 0.75$$

$$p(y_2) = 1 - p(y_1) = 0.25$$

31

The Bayesian Doctor Example

$$\begin{split} & R(a_1 \mid y_1) = p(x_1 \mid y_1) \cdot \lambda_{1,1} + p(x_2 \mid y_1) \cdot \lambda_{1,2} \\ & = 0 + p(x_2 \mid y_1) \cdot 10 \\ & = 10 \cdot \frac{p(y_1 \mid x_2) \cdot p(x_2)}{p(y_1)} \\ & = 10 \cdot \frac{0.3 \cdot 0.1}{0.75} = 0.4 \\ & R(a_2 \mid y_1) = p(x_1 \mid y_1) \cdot \lambda_{2,1} + p(x_2 \mid y_1) \cdot \lambda_{2,2} \\ & = p(x_1 \mid y_1) \cdot 1 + p(x_2 \mid y_1) \cdot 0 \\ & = \frac{p(y_1 \mid x_1) \cdot p(x_1)}{p(y_1)} \\ & = \frac{0.8 \cdot 0.9}{0.75} = 0.96 \end{split}$$

32

The Bayesian Doctor Example

$R(a_1 y_2) = p(x_1 y_2) \cdot \lambda_{1,1} + p(x_2 y_2) \cdot \lambda_{1,2}$
$= 0 + p(x_2 \mid y_2) \cdot 10$
$=10 \cdot \frac{p(y_2 \mid x_2) \cdot p(x_2)}{p(y_2)}$
1 0 27
$=10 \cdot \frac{0.7 \cdot 0.1}{0.25} = 2.8$
$R(a_2 y_2) = p(x_1 y_2) \cdot \lambda_{2,1} + p(x_2 y_2) \cdot \lambda_{2,2}$
$= p(x_1 y_2) \cdot 1 + p(x_2 y_2) \cdot 0$
$= \frac{p(y_2 \mid x_1) \cdot p(x_1)}{p(x_1)}$
$p(y_2)$

 $=\frac{0.2\cdot0.9}{0.25}=0.72$

The Bayesian Doctor Example

■ To summarize: $R(a_1 | y_1) = 0.4$

 $R(a_2 | y_1) = 0.96$ $R(a_1 | y_2) = 2.8$

 $R(a_2 \mid y_2) = 0.72$

• Given an observation y, we can minimize the expected loss by minimizing the conditional risk.

- The doctor chooses:
 - Hot tea if blood test is negative
 - · Antibiotics otherwise.

34

Optimal Bayes Decision Strategies

- The *total risk* of a decision function is given by $E_{p(y)}[R(\alpha(y)\,|\,y)] = \sum p(y)\cdot R(\alpha(y)\,|\,y)$
- A decision function is optimal if it minimizes the total risk. This optimal total risk is called Bayes risk.
- In the Bayesian doctor example:
 - The prior risk (the doctor always gives antibiotics): 0.9
 - The Bayes risk: 0.75*0.4+0.25*0.72=0.48

35