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Outline

 Bayesian decisions

 The Bayesian student

 The Bayesian doctor 

Taken (almost) entirely from course:
Visual Recognition (236875) in the Technion

Decision theory

 Decision theory is an interdisciplinary 
area of study concerned with:

1. How decision-makers make decisions.
2. How optimal decisions can be reached.

 Decoding of neural information (and 
other types of encodings) relies heavily 
on decision theory.
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Simple decision example

 Suppose that we know (via prior knowledge) 
that 25% of the newborns on April 1st are male 
and 75% are females. 

 Our friend just had a newborn baby on that 
day but we forgot to ask about his/her gender. 
Should we buy the baby a pink or blue shirt?
(Yes, I know that colors don’t matter but to this specific mother, they do)

 Thus, we need to guess the value of the 
variable X reflecting the state of nature using 
the a priori probabilities.

Decision error

 Decision error  the probability of picking one 
possibility when the state of nature is different.

 The decision is done to minimize the error.

 In this example

If we decide boy ( )
( )

If we decide girl ( )

P girl
P error

P boy


  

Simple decision example –
adding features

 Some features may give us information about 
the state of nature. 

 Assuming that we know the weight distribution of boys 
(blue) and girls (red) and the happy mother told us that 
the baby weighs 4Kg, which shirt should we bring?
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Simple decision example –
conditional probability

 Assuming that the weight is represented by 
the random variable Y. The distribution of the 
weights assuming the gender is described by 
the class conditional probability p(y|x)

 So now the question becomes: what is that 
probability of a specific gender given the 
weight  p(x|y) ???

When 2 variables are statistically dependent, 
knowing the value of one of them lets us get a 
better estimate of the value of the other one. 

This is expressed by the conditional probability 
of x given y:

If x and y are statistically independent, then

Conditional probability

)()|( xPyxP 

)(

),(
)|(

yP

yxP
yxP 

 The law of total probability: If event X can occur 
in m different ways x1, x2,…, xm and if they are 
mutually exclusive  the probability of X is the 
sum of the probabilities x1, x2,…, xm.

 From the definition of conditional probability

( ) ( , ).
x

P y P x y

)()|()()|(),( xPxyPyPyxPyxP 

Bayes’ rule I
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( | ) ( ) ( | ) ( )
( | )

( , ) ( | ) ( )
x x

P y x P x P y x P x
P x y

P x y P y x P x
 
 

likelihood  prior
posterior  

evidence




( | ) ( )
( | )

( )

P y x P x
P x y

P y


Bayes’ rule II

 For continuous random variable we refer to 
densities rather than probabilities; in particular,

 The Bayes’ rule for densities becomes:

( , )
( | )

( )

p x y
p x y

p y


( | ) ( )
( | )

( | ) ( )

p y x p x
p x y

p y x p x dx








Bayes' rule – continuous case

 x is termed the cause & y is termed the effect. 
Assuming x is present, we know the likelihood 
of y to be observed

 Bayes’ rule allows to determine the likelihood of 
a cause x given an observation y. Note: there 
may be many causes producing  y.

 Bayes’ rule shows how probability for x
changes from prior p(x) before we observe 
anything, to posterior p(x| y) once we have 
observed y.

Bayes’ rule - importance
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Bayes’ decision rule

 Decision:

boy : if P(boy|weight) > P(girl|weight) 

girl : otherwise

or

boy : if P (weight |boy)P(boy) > P(weight|girl)P(girl) 

girl : otherwise

 Error:

P(error|weight) = min [P(boy|weight) , P(girl|weight)] 

If we decide boy ( | )
( | )

If we decide girl ( | )

P girl weight
P error weight

P boy weight


  

Loss function

 The problem arises when different decisions 
have different consequences (for example: pink shirt for a boy 
is less acceptable in many cultures than a blue one for a girl).

 Loss (or cost) function states exactly how costly 
each action is, and is used to convert a 
probability determination into a decision. Loss 
functions let us treat situations in which some 
kinds of classification mistakes are more costly 
than others.

 Suppose that we observe a particular y and 
that we contemplate taking action      .

 If the true state of nature is xj the loss is 

 Before we have done an observation
the expected loss is

 After the observation the expected risk which 
is called now the conditional risk is given by

i

( | )i jx 

1

( ) ( | ) ( )
C

i i j j
j

R x P x  




Expected loss

1

( | ) ( | ) ( | )
C

i i j j
j

R y x P x y  



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 Compute the conditional risk for each action

 Select the action      for which               is minimal.

 The resulting minimum risk is called the Bayes 
Risk, denoted R*, and is the best performance 
that can be achieved.

1

( | ) ( | ) ( | )
C

i i j j
j

R y x P x y  


 

( | )iR yi

Bayes’ decision rule

Optimal Bayes Decision Strategies

 A strategy or decision function (y) is a 
mapping from observations to actions. 

 The total risk of a decision function is given by

 A decision function is optimal if it minimizes the 
total risk. This optimal total risk is called Bayes 
risk.

( )[ ( ( ) | )] ( ) ( ( ) | )p y
y

E R y y p y R y y  

Outline

 Bayesian decisions

 The Bayesian student

 The Bayesian doctor
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A student needs to achieve a decision on which 
courses to take, based only on his first lecture.

From his previous experience, he knows the 
prior probabilities :

Quality of 
the course

good fair bad

P(xj)  prior 0.2 0.4 0.4

The student dilemma 

 The student also knows the class-conditionals:

 The loss function is given by the matrix

P(y|xj) good fair bad

Interesting lecture 0.8 0.5 0.1

Boring lecture 0.2 0.5 0.9

(ai|xj) good course fair course bad course

Taking the course 0 5 10

Not taking the 
course

20 5 0

The student dilemma 

The student wants to make an optimal decision 
of taking the course based on the first lecture.

The probability of hearing an interesting lecture:

P(interesting)=   P(interesting|good)* P(good)
+ P(interesting|fair)* P(fair)
+ P(interesting|bad)* P(bad)
= 0.8*0.2+0.5*0.4+0.1*0.4 = 0.4

P(boring)= 1-P(interesting) = 1-0.4 =0.6

Assuming that the lecture was interesting, what 
are the posterior probabilities of each of the 3 
possible “states of nature”?

The student dilemma 
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 We can get P(bad|interesting)=0.1 either by the 
same method, or by noting that it complements 
to 1 the above two.

P(good course|interesting lecture)

P(interesting|good)Pr(good) 0.8*0.2
0.4

P(interesting) 0.4
  

P(fair|interesting)

P(interesting|fair)P(fair) 0.5*0.4
0.5

P(interesting) 0.4
  

The student dilemma

 The student needs to minimize the conditional risk.

 In this case there are only two possible actions: taking or not 
taking the course.

R(taking|interesting)= P(good|interesting)λ(taking course|good) 
+P(fair|interesting)λ(taking course|fair)
+P(bad|interesting)λ(taking course|bad)

=0.4*0+0.5*5+0.1*10=3.5      

R(not taking|interesting)=P(good|interesting)λ(not taking course|good) 
+P(fair|interesting)λ(not taking course|fair)
+P(bad|interesting)λ(not taking course|bad)

=0.4*20+0.5*5+0.1*0=10.5

1

( | ) ( | ) ( | )
c

i i j j
j

R y x P x y  




The student dilemma

 So, if the first lecture was interesting, the 
student will minimize the conditional risk by 
taking the course.

 In order to construct the full decision function, 
we need to define the risk minimization action 
for the case of boring lecture, as well.

The student dilemma

22

23

24



9

Outline

 Bayesian decisions

 The Bayesian student

 The Bayesian doctor

A person doesn’t feel well and goes to the doctor.
Assume two states of nature:
x1 : The person has a common flu. 
x2 : The person has a vicious bacterial infection.

The doctors prior is:

This doctor has two possible actions: 
a1 = Prescribe hot tea. 
a2 = Prescribe antibiotics. 

The doctor can use prior and predict optimally: always flu.

Therefore doctor will always prescribe hot tea.

2( ) 0.1p x 1( ) 0.9p x 

The Bayesian Doctor Example

 But there is very high risk: Although this doctor can 
diagnose with very high rate of success using the prior, 
(s)he can lose a patient once in a while.

 Denote the two possible actions:
a1 = prescribe hot tea
a2 = prescribe antibiotics

 Now assume the following cost (loss) matrix:

1 2

, 1

2

0 10

1 0
i j

x x

a

a

 

The Bayesian Doctor Example
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 Choosing a1 results in expected risk of

 Choosing a2 results in expected risk of 

 So, considering the costs it’s much better 
(and optimal!) to always give antibiotics.

1 1 1,1 2 1,2( ) ( ) ( )

0 0.1 10 1

R a p x p x    

   

2 1 2,1 2 2,2( ) ( ) ( )

0.9 1 0 0.9

R a p x p x    

   

The Bayesian Doctor Example

 However, doctors can also produce some
observations such as performing a blood test.

 The possible results of the blood test are:
y1 = negative (no bacterial infection)
y2 = positive  (infection)

 Blood tests are never conclusive leading to the 
class conditional probabilities.

1 2 2 2( | ) 0.3 ( | ) 0.7p y x p y x 

1 1 2 1( | ) 0.8 ( | ) 0.2p y x p y x 

The Bayesian Doctor Example

 Define the conditional risk given the 
observation

 We would like to compute the conditional 
risk for each action and observation so that 
the doctor  can choose an optimal action 
that minimizes risk.

 How can we compute                  ? 

 We use the class conditional probabilities 
and Bayes inversion rule.

,( | ) ( | )
j

i j i jR a y p x y


 

( | )jp x y

The Bayesian Doctor Example
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 The results of the blood test follow the 
probabilities:

1 1 1 1 1 2 2( ) ( | ) ( ) ( | ) ( )

0.8 0.9 0.3 0.1

0.75

p y p y x p x p y x p x   
   


2 1( ) 1 ( ) 0.25p y p y  

The Bayesian Doctor Example

1 1 1 1 1,1 2 1 1,2

2 1

1 2 2

1

R( | ) ( | ) ( | )

0 ( | ) 10

( | ) ( )
10

( )

0.3 0.1
10 0.4

0.75

a y p x y p x y

p x y

p y x p x

p y

    

  


 


  

2 1 1 1 2,1 2 1 2,2

1 1 2 1

1 1 1

1

( | ) ( | ) ( | )

( | ) 1 ( | ) 0

( | ) ( )

( )

0.8 0.9
0.96

0.75

R a y p x y p x y

p x y p x y

p y x p x

p y

    

   





 

The Bayesian Doctor Example

1 2 1 2 1,1 2 2 1,2

2 2

2 2 2

2

( | ) ( | ) ( | )

0 ( | ) 10

( | ) ( )
10

( )

0.7 0.1
10 2.8

0.25

R a y p x y p x y

p x y

p y x p x

p y

    

  


 


  

2 2 1 2 2,1 2 2 2,2

1 2 2 2

2 1 1

2

( | ) ( | ) ( | )

( | ) 1 ( | ) 0

( | ) ( )

( )

0.2 0.9
0.72

0.25

R a y p x y p x y

p x y p x y

p y x p x

p y

    

   





 

The Bayesian Doctor Example
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 To summarize:

 Given an observation y, we can minimize the 
expected loss by minimizing the conditional risk.

 The doctor chooses:
 Hot tea if blood test is negative

 Antibiotics otherwise.

1 1( | ) 0.4R a y 

2 1( | ) 0.96R a y 

1 2( | ) 2.8R a y 

2 2( | ) 0.72R a y 

The Bayesian Doctor Example

Optimal Bayes Decision Strategies

 The total risk of a decision function is given by

 A decision function is optimal if it minimizes the 
total risk. This optimal total risk is called Bayes 
risk.

 In the Bayesian doctor example: 
 The prior risk (the doctor always gives antibiotics): 0.9

 The Bayes risk: 0.75*0.4+0.25*0.72=0.48

( )[ ( ( ) | )] ( ) ( ( ) | )p y
y

E R y y p y R y y  
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