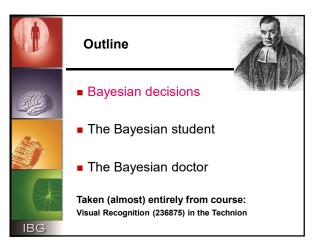


1



2



## **Decision theory**

- Decision theory is an interdisciplinary area of study concerned with:
- 1. How decision-makers make decisions.
- 2. How optimal decisions can be reached.
- Decoding of neural information (and other types of encodings) relies heavily on decision theory.



### Simple decision example

- Suppose that we know (via prior knowledge) that 25% of the newborns on April 1st are male and 75% are females.
- Our friend just had a newborn baby on that day but we forgot to ask about his/her gender. Should we buy the baby a pink or blue shirt?

(Yes, I know that colors don't matter but to this specific mother, they do)

■ Thus, we need to guess the value of the variable *X* reflecting the state of nature using the a priori probabilities.

4



#### **Decision error**

- Decision error → the probability of picking one possibility when the state of nature is different.
- The decision is done to minimize the error.
- In this example

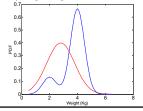
 $P(error) = \begin{cases} \text{If we decide boy} \Rightarrow P(girl) \\ \text{If we decide girl} \Rightarrow P(boy) \end{cases}$ 

5



# Simple decision example – adding features

- Some features may give us information about the state of nature.
- Assuming that we know the weight distribution of boys (blue) and girls (red) and the happy mother told us that the baby weighs 4Kg, which shirt should we bring?



6



# Simple decision example – conditional probability

- Assuming that the weight is represented by the random variable Y. The distribution of the weights assuming the gender is described by the class conditional probability p(y|x)
- So now the question becomes: what is that probability of a specific gender given the weight → p(x|y) ???

7



# **Conditional probability**

- When 2 variables are statistically dependent, knowing the value of one of them lets us get a better estimate of the value of the other one.
- This is expressed by the conditional probability of *x* given *y*:

$$P(x \mid y) = \frac{P(x, y)}{P(y)}$$

• If x and y are statistically independent, then  $P(x \mid y) = P(x)$ 

8



## Bayes' rule I

The law of total probability: If event X can occur in m different ways x<sub>1</sub>, x<sub>2</sub>,..., x<sub>m</sub> and if they are mutually exclusive → the probability of X is the sum of the probabilities x<sub>1</sub>, x<sub>2</sub>,..., x<sub>m</sub>.

$$P(y) = \sum P(x, y).$$

From the definition of conditional probability

$$P(x, y) = P(x \mid y)P(y) = P(y \mid x)P(x)$$



# Bayes' rule II



$$P(x \mid y) = \frac{P(y \mid x)P(x)}{P(y)}$$



$$P(x \mid y) = \frac{P(y \mid x)P(x)}{\sum_{x} P(x, y)} = \frac{P(y \mid x)P(x)}{\sum_{x} P(y \mid x)P(x)}$$

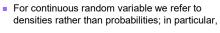


posterior = 
$$\frac{\text{likelihood} \times \text{prior}}{\text{evidence}}$$

10



## Bayes' rule - continuous case



$$p(x \mid y) = \frac{p(x, y)}{p(y)}$$

■ The Bayes' rule for densities becomes:

$$p(x \mid y) = \frac{p(y \mid x)p(x)}{\int p(y \mid x)p(x)dx}$$

11



## Bayes' rule - importance

- x is termed the cause & y is termed the effect.
   Assuming x is present, we know the likelihood of y to be observed
- Bayes' rule allows to determine the likelihood of a cause x given an observation y. Note: there may be many causes producing y.
- Bayes' rule shows how probability for x changes from prior p(x) before we observe anything, to posterior p(x| y) once we have observed y.



## Bayes' decision rule

#### Decision:

 $boy: if \ P(boy|weight) > P(girl|weight)$ 

girl: otherwise

or

boy : if P (weight |boy)P(boy) > P(weight|girl)P(girl)

girl: otherwise

Error:

P(error | weight) =  $\begin{cases} \text{If we decide boy} \Rightarrow P(girl \mid weight) \\ \text{If we decide girl} \Rightarrow P(boy \mid weight) \end{cases}$ 

P(error|weight) = min [P(boy|weight) , P(girl|weight)]

13



#### **Loss function**

- The problem arises when different decisions have different consequences (for example: pink shirt for a boy is less acceptable in many cultures than a blue one for a girt).
- Loss (or cost) function states exactly how costly each action is, and is used to convert a probability determination into a decision. Loss functions let us treat situations in which some kinds of classification mistakes are more costly than others.

14



#### **Expected loss**

- Suppose that we observe a particular  ${\bf y}$  and that we contemplate taking action  $\alpha_i$  .
- $\blacksquare$  If the true state of nature is  $\mathbf{x}_{\!j}$  the loss is  $\lambda(\alpha_{\!\scriptscriptstyle i}\,|\,x_{\!\scriptscriptstyle j})$
- Before we have done an observation the expected loss is  $R(\alpha_i) = \sum_{j=1}^{C} \lambda(\alpha_i \mid x_j) P(x_j)$
- After the observation the expected risk which is called now the conditional risk is given by
  - $R(\alpha_i \mid y) = \sum_{j=1}^{C} \lambda(\alpha_i \mid x_j) P(x_j \mid y)$



# Bayes' decision rule

- Compute the conditional risk for each action  $R(\alpha_i \mid y) = \sum_{j=1}^C \lambda(\alpha_i \mid x_j) P(x_j \mid y)$
- Select the action  $\alpha_i$  for which  $R(\alpha_i | y)$  is minimal.
- The resulting minimum risk is called the Bayes Risk, denoted R\*, and is the best performance that can be achieved.

16



# **Optimal Bayes Decision Strategies**

- A strategy or decision function α(y) is a mapping from observations to actions.
- The *total risk* of a decision function is given by  $E_{p(y)}[R(\alpha(y)\,|\,y)] = \sum p(y) \cdot R(\alpha(y)\,|\,y)$
- A decision function is optimal if it minimizes the total risk. This optimal total risk is called Bayes risk.

17



#### **Outline**

- Bayesian decisions
- The Bayesian student
- The Bayesian doctor

18



#### The student dilemma

- A student needs to achieve a decision on which courses to take, based only on his first lecture.
- From his previous experience, he knows the prior probabilities

| Quality of the course      | good | fair | bad |
|----------------------------|------|------|-----|
| $P(x_j) \rightarrow prior$ | 0.2  | 0.4  | 0.4 |

19



#### The student dilemma

■ The student also knows the class-conditionals:

| $P(y x_j)$          | good | fair | bad |
|---------------------|------|------|-----|
| Interesting lecture | 0.8  | 0.5  | 0.1 |
| Boring lecture      | 0.2  | 0.5  | 0.9 |

■ The loss function is given by the matrix

| $\lambda(a_i x_j)$    | good course | fair course | bad course |
|-----------------------|-------------|-------------|------------|
| Taking the course     | 0           | 5           | 10         |
| Not taking the course | 20          | 5           | 0          |

20



# The student dilemma

- The student wants to make an optimal decision of taking the course based on the first lecture.
- The probability of hearing an interesting lecture:

P(interesting)= P(interesting|good)\* P(good) + P(interesting|fair)\* P(fair) + P(interesting|bad)\* P(bad) = 0.8\*0.2+0.5\*0.4+0.1\*0.4 = 0.4

P(boring)= 1-P(interesting) = 1-0.4 = 0.6

Assuming that the lecture was interesting, what are the **posterior** probabilities of each of the 3 possible "states of nature"?



#### The student dilemma

$$\begin{split} &P(good\ course|interesting\ lecture)\\ &=\frac{P(interesting|good)Pr(good)}{P(interesting)} = \frac{0.8*0.2}{0.4} = 0.4 \end{split}$$

P(fair|interesting)

 $= \frac{P(interesting|fair)P(fair)}{P(interesting)} = \frac{0.5*0.4}{0.4} = 0.5$ 

 We can get P(bad|interesting)=0.1 either by the same method, or by noting that it complements to 1 the above two.

22



## The student dilemma

■ The student needs to minimize the conditional risk.

$$R(\alpha_i \mid y) = \sum_{j=1}^{c} \lambda(\alpha_i \mid x_j) P(x_j \mid y)$$

In this case there are only two possible actions: taking or not taking the course.

R(taking|interesting)= P(good|interesting)\((taking course|good) +P(fair|interesting)\((taking course|fair) +P(bad|interesting)\((taking course|bad) = 0.4\*0+0.5\*5+0.1\*10=3.5

R(not taking|interesting)=P(good|interesting)\(\)(not taking course|good)
+P(fair|interesting)\(\)(not taking course|fair)
+P(bad|interesting)\(\)(not taking course|bad)
=0.4\*20+0.5\*5+0.1\*0=10.5

23



#### The student dilemma

- So, if the first lecture was interesting, the student will minimize the conditional risk <u>by</u> taking the course.
- In order to construct the full decision function, we need to define the risk minimization action for the case of boring lecture, as well.



## **Outline**

- Bayesian decisions
- The Bayesian student
- The Bayesian doctor

25



# **The Bayesian Doctor Example**

A person doesn't feel well and goes to the doctor. Assume two states of nature:

- $x_1$ : The person has a common flu.
- $x_2$ : The person has a vicious bacterial infection.

The doctors *prior* is:  $p(x_1) = 0.9$   $p(x_2) = 0.1$ 

This doctor has two possible actions:

- $a_1$  = Prescribe hot tea.
- $a_2$  = Prescribe antibiotics.

The doctor can use prior and predict optimally: always flu.

Therefore doctor will always prescribe hot tea.

26



# The Bayesian Doctor Example

- But there is very high risk: Although this doctor can diagnose with very high rate of success using the prior, (s)he can lose a patient once in a while.
- Denote the two possible actions:
  - $a_1$  = prescribe hot tea
- a<sub>2</sub> = prescribe antibiotics
- Now assume the following cost (loss) matrix:

$$\lambda_{i,j} = \frac{\begin{vmatrix} x_1 & x_2 \\ a_1 & 0 & 10 \\ a_2 & 1 & 0 \end{vmatrix}$$



## The Bayesian Doctor Example

- Choosing  $a_1$  results in expected risk of  $R(a_1) = p(x_1) \cdot \lambda_{1,1} + p(x_2) \cdot \lambda_{1,2}$ 
  - $= 0 + 0.1 \cdot 10 = 1$
- Choosing  $a_2$  results in expected risk of  $R(a_2) = p(x_1) \cdot \lambda_{2,1} + p(x_2) \cdot \lambda_{2,2}$ 
  - $=0.9 \cdot 1 + 0 = 0.9$
- So, considering the costs it's much better (and optimal!) to always give antibiotics.

28



# The Bayesian Doctor Example

- However, doctors can also produce some observations such as performing a blood test.
- The possible results of the blood test are:
   y<sub>1</sub> = negative (no bacterial infection)
   y<sub>2</sub> = positive (infection)
- Blood tests are never conclusive leading to the class conditional probabilities.

$$p(y_1 | x_1) = 0.8$$

$$p(y_2 | x_1) = 0.2$$

$$p(y_1 \mid x_2) = 0.3$$

$$p(y_2 | x_2) = 0.7$$

29



#### The Bayesian Doctor Example

- Define the conditional risk given the observation  $R(a_i | y) = \sum_{\alpha} p(x_j | y) \cdot \lambda_{i,j}$
- We would like to compute the conditional risk for each action and observation so that the doctor can choose an optimal action that minimizes risk.
- How can we compute  $p(x_j | y)$  ?
- We use the class conditional probabilities and Bayes inversion rule.



# **The Bayesian Doctor Example**

The results of the blood test follow the probabilities:

$$p(y_1) = p(y_1 | x_1) \cdot p(x_1) + p(y_1 | x_2) \cdot p(x_2)$$

$$= 0.8 \cdot 0.9 + 0.3 \cdot 0.1$$

$$= 0.75$$

$$p(y_2) = 1 - p(y_1) = 0.25$$

31



## **The Bayesian Doctor Example**

$$\begin{split} & R(a_1 \mid y_1) = p(x_1 \mid y_1) \cdot \lambda_{1,1} + p(x_2 \mid y_1) \cdot \lambda_{1,2} \\ & = 0 + p(x_2 \mid y_1) \cdot 10 \\ & = 10 \cdot \frac{p(y_1 \mid x_2) \cdot p(x_2)}{p(y_1)} \\ & = 10 \cdot \frac{0.3 \cdot 0.1}{0.75} = 0.4 \\ & R(a_2 \mid y_1) = p(x_1 \mid y_1) \cdot \lambda_{2,1} + p(x_2 \mid y_1) \cdot \lambda_{2,2} \\ & = p(x_1 \mid y_1) \cdot 1 + p(x_2 \mid y_1) \cdot 0 \\ & = \frac{p(y_1 \mid x_1) \cdot p(x_1)}{p(y_1)} \\ & = \frac{0.8 \cdot 0.9}{0.75} = 0.96 \end{split}$$

32



## **The Bayesian Doctor Example**

| $R(a_1   y_2) = p(x_1   y_2) \cdot \lambda_{1,1} + p(x_2   y_2) \cdot \lambda_{1,2}$ |
|--------------------------------------------------------------------------------------|
| $= 0 + p(x_2 \mid y_2) \cdot 10$                                                     |
| $=10 \cdot \frac{p(y_2 \mid x_2) \cdot p(x_2)}{p(y_2)}$                              |
| 1 0 27                                                                               |
| $=10 \cdot \frac{0.7 \cdot 0.1}{0.25} = 2.8$                                         |
| $R(a_2   y_2) = p(x_1   y_2) \cdot \lambda_{2,1} + p(x_2   y_2) \cdot \lambda_{2,2}$ |
| $= p(x_1   y_2) \cdot 1 + p(x_2   y_2) \cdot 0$                                      |
| $= \frac{p(y_2 \mid x_1) \cdot p(x_1)}{p(x_1)}$                                      |
| $p(y_2)$                                                                             |

 $=\frac{0.2\cdot0.9}{0.25}=0.72$ 



## The Bayesian Doctor Example

■ To summarize:  $R(a_1 | y_1) = 0.4$ 

 $R(a_2 | y_1) = 0.96$  $R(a_1 | y_2) = 2.8$ 

 $R(a_2 \mid y_2) = 0.72$ 

• Given an observation y, we can minimize the expected loss by minimizing the conditional risk.

- The doctor chooses:
  - Hot tea if blood test is negative
  - · Antibiotics otherwise.

34



# **Optimal Bayes Decision Strategies**

- The *total risk* of a decision function is given by  $E_{p(y)}[R(\alpha(y)\,|\,y)] = \sum p(y)\cdot R(\alpha(y)\,|\,y)$
- A decision function is optimal if it minimizes the total risk. This optimal total risk is called Bayes risk.
- In the Bayesian doctor example:
  - The prior risk (the doctor always gives antibiotics): 0.9
  - The Bayes risk: 0.75\*0.4+0.25\*0.72=0.48

35