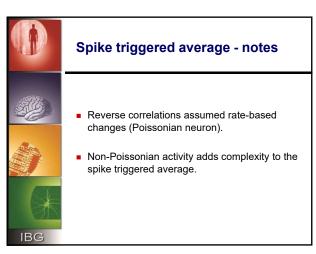
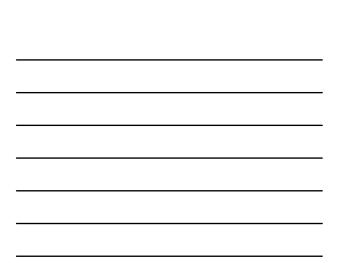
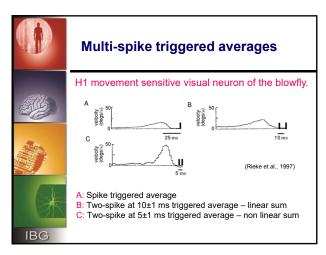

 In the event driven activity lecture we related stimulus described as a point process to the neuronal activity. This lecture will describe the general case of a time series representation of the stimulus (or even more generally: a stochastic process) and its relation to neuronal activity.
Spike triggered average
■ What does the spike encode? ■ What is the average stimulus preceding a spike?
spike-triggered average
 Stimulus and response are defined periodically: r(t+T)=r(t), s(t+T)=s(t).
 Reverse correlation
Average stimulus preceding the spike = Reverse correlation of the stimulus and the spike train $C(\tau) \ = \ \frac{1}{n} \sum_{i=1}^n s(t_i - \tau)$
$= \frac{1}{n} \int dt \rho(t) s(t - \tau)$ $\langle C(\tau) \rangle = \frac{1}{n} \int dt r(t) s(t - \tau)$
$=\frac{1}{r}Q_{rs}(-\tau)$

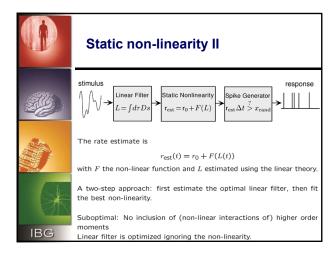

Stimulus → Spike train


with r=n/T the average spike rate and $Q_{rs}=\frac{1}{T}\int_0^Tdtr(t)s(t+\tau)$ the correlation between the signals r and s.



	Outline
	 Reverse correlations
	■ Linear filters
	■ Static non-linearity
	■ Example: V1 simple neurons
	IBG
	Stimulus → Rate
	We will try to describe the rate of the neuron as a function of the stimulus at all previous time.
	 We will define this function as a filter on the stimulus. Filters will be discussed in great detail in the spectral part of course
	• The general description (Volterra expansion) $r_{ext}(t) = r_0 + \int_0^\infty d\tau D(\tau) s(t-\tau)) + \int_0^\infty d\tau_1 d\tau_2 D_2(\tau_1, \tau_2) s(t-\tau_1) s(t-\tau_2)) + \dots$
	IBG
	Linear filter model
	The basic model that we will use is of the neuron as a linear filter on the stimulus The basic model that we will use is of the neuron as a linear filter on the stimulus
	$r_{est}(t) = r_0 + \int\limits_0^\infty D(\tau) s(t-\tau) d\tau$ r_0 — baseline firing rate $parton D$ - response kernel
	r_0 — baseline filling rate t —
	What is the best rate estimation r _{est} (t)? Or in other words what is the best kernel D _{opt} (t)?
	■ To do that we'll first define white noise
·	

 White noise stimulus
White noise is random (non-restricted values), uncorrelated stochastic process - s(t): $\langle s(t)\cdot s(t+\tau)\rangle = \sigma_s^{\ 2}\cdot \delta(\tau)$ The stimulus autocorrelation function - Q:
 $Q_{s,s}(\tau) = \frac{1}{T} \cdot \int_{0}^{T} s(t) \cdot s(t+\tau) dt$ Thus, the autocorrelation of white noise – Q: $Q_{s,s}(\tau) = \sigma_s^2 \cdot \delta(t)$
Assuming an ergodic signal we traded ensemble average for time average.
 Optimal kernel I
■ The best rate estimator is defined by the difference from the actual rate function. $E = \frac{1}{T} \cdot \int_{0}^{T} (r_{cu}(t) - r(t))^{2} dt$
■ The best estimator minimizes the difference $\frac{dE}{dD(\tau)} = \frac{2}{T} \int_0^T dt (r_{\rm est}(t) - r(t)) s(t - \tau) \\ = \frac{2}{T} \int_0^T dt \left(r_0 + \int_0^\infty d\tau' D(\tau') s(t - \tau') - r(t) \right) s(t) \\ = 2 \int_0^\infty d\tau' D(\tau') Q_{ss}(\tau - \tau') d\tau' - Q_{rs}(-\tau)$
$Q_{s,s}(\tau) = \frac{1}{T} \cdot \int_{0}^{T} s(t) \cdot s(t+\tau) dt \qquad Q_{r,s}(\tau) = \frac{1}{T} \cdot \int_{0}^{T} r(t) \cdot s(t+\tau) dt$
 Optimal kernel II
 The best estimation is achieved: $\int\limits_0^\infty d\tau' Q_{ss}(\tau-\tau')D(\tau')=Q_{rs}(-\tau)$
 For white-noise stimuli $Q_{ss}(\tau)=\sigma_s^2\delta(\tau)$, so $\sigma_s^2\int\limits_0^\infty \delta(\tau-\tau')D(\tau')d\tau'=\sigma_s^2\cdot D(\tau)=Q_{r,s}(-\tau)$


 $D(\tau) = \frac{Q_{rs}(-\tau)}{\sigma_s^2} = \frac{\langle r \rangle C(\tau)}{\sigma_s^2}$

 Optimal kernel calculation
 Create white noise stimulus (no correlations). Calculate spike triggered average response to the stimulating white noise. Normalize the spike triggered average by the rate to get the optimal kernel.
H1 neuron in visual system of blowfly
Stimulus – image velocity Response of H1 neuron Estimated rate r _{est} (t) (solid assuming linear kernel Neural rate r(t) (dashed) averaged spike trains
IBG (m)
 Optimal kernel without white noise input
• Solving the equation: $\int_{0}^{\infty} d\tau' Q_{ss}(\tau - \tau') D(\tau') = Q_{rs}(-\tau)$ • When the input is not white, a Fourier transform of the correlation functions enables finding the optimal kernel $\tilde{D}(\omega) = \frac{\tilde{Q}_{r,s}(-\omega)}{\tilde{Q}_{s,s}(\omega)}$
 $D(au) = rac{1}{2\pi} \cdot \int rac{ ilde{Q}_{r,s}(-\omega)}{ ilde{Q}_{r,o}(-\omega)} \cdot e^{-i\omega au} d\omega$

 Outline
■ Reverse correlations
Linear filters
 ■ Static non-linearity
Example: V1 simple neurons
Deviation from linearity
 Typically neurons deviate from the linear relationship: r_{ext}(t) = r₀ + ∫ D(τ)s(t − τ)dτ = r₀ + L(t) The most common deviations are saturation and threshold.
100 100 100 100 100 100 100 100 100 100
 Static non-linearity I
100 — (1) 80 — (2) 20 — (3)
$(1) F(L) = G \cdot [L-1]_{+}$ $(2) F(L) = \frac{r_{\text{max}}}{1 + e^{2(L_{\chi}-L)}}$
 $(2)F(L) = \frac{2(L_{\chi}-L)}{1 + e^{2(L_{\chi}-L)}}$ $(3)F(L) = r_{\text{max}} \cdot \left[\tanh(0.5(L - L_0)) \right]_{+} \tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$
IBG

IBG $G = 25 \text{ Hz}, L_0 = 1, L_{1/2} = 3, r_{\text{max}} = 100 \text{ Hz}, g_1 = 2, \text{ and } g_2 = 1/2$

IBG

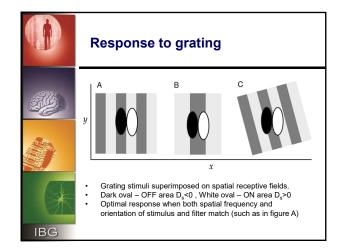
Non-linearity - other options

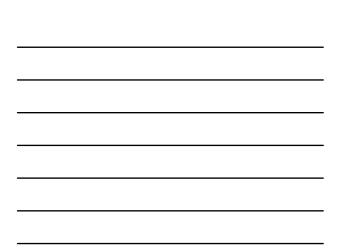
- The optimization method is non optimal even for static non linearity. However, Bussgang theorem demonstrates that it is close to optimal for Gaussian white noise.
- The other options are:
 - Optimize a non-linear function

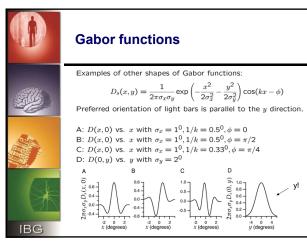
$$r_{est}(t) = r_0 + \int_{0}^{\infty} D(\tau) f(s(t-\tau)) d\tau$$

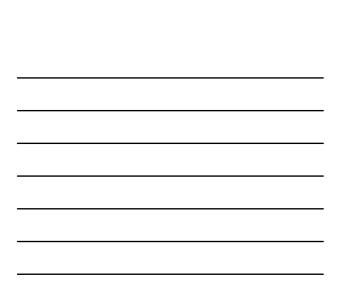
Use more terms in the Volterra or Wiener expansion

$$r_{est}(t) = r_0 + \int_0^\infty d\tau D(\tau) s(t-\tau)) + \int_0^\infty d\tau_1 d\tau_2 D_2(\tau_1, \tau_2) s(t-\tau_1) s(t-\tau_2)) + \dots$$




Outline


- Reverse correlations
- Linear filters
- Static non-linearity
- Example: V1 simple neurons


·	1	Visual stimuli
		Sinusoidal grating $s(x,y,t)=A\cos(Kx\cos\Theta+Ky\sin\Theta-\Phi)\cos(\omega t)$ K,ω spatial, temporal frequency. Θ is orientation. White-noise stimulus
		$\left\langle s(x,y,t)s(x',y',t')\right\rangle = \sigma^2\delta(t-t')\delta(x-x')\delta(y-y')$ $\langle s\rangle = 0 \text{ to avoid dependence on overall illumination.} \qquad \qquad$
	IBG	x t
		Spatial receptive fields
		We generalize previous concepts to 2-d visual stimuli $s(x,y,t)$: Spike-triggered average $C(x,y,\tau)=\frac{1}{n}\left\langle \sum_{i=1}^n s(x,y,t_i-\tau)\right\rangle$ Correlation function $Q_{rs}(x,y,\tau)=\frac{1}{T}\int_0^T dtr(t)s(x,y,t+\tau)$ $C(x,y,\tau)=\frac{Q_{rs}(x,y,-\tau)}{r}$ Linear filter $L(t)=\int_0^\infty d\tau\int dxdyD(x,y,\tau)s(x,y,t-\tau)$ For white-noise $D(x,y,\tau)=\frac{Q_{rs}(x,y,-\tau)}{r}$ Separable kernel $D(x,y,\tau)=D_s(x,y)D_t(\tau)$ $D_s(x,y)\propto\int d\tau D(x,y,\tau)$
	IBG	
		V1 spatial receptive fields
		D(x,y) from spike triggered average of two different cat visual cortex area 17 simple cells. Stimulus is averaged 50-100 msec prior to action potential. $D(x,y)$ shows separate ON and OFF region.
	IBG	Simple cells with up to 5 regions are found. Gabor function $D(x,y) = \frac{\cos(kx-\phi)}{2\pi\sigma_x\sigma_y} \exp\left(-\frac{x^2}{2\sigma_x^2} - \frac{x^2}{2\sigma_y^2}\right)$ (Border parallel to y axis i.e. Θ=0, origin at center

