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Outline

 Entropy

 Mutual information

 Continuous variables 

Suggested reading:

 Elements of Information Theory, T. Cover & J. Thomas, Ch. 2. 
 Information Theory, Inference, and Learning Algorithms, David J.C. MacKay, Ch. 2 

(Online version is available on the course web site).

Introduction

 Information theory is a branch 
of mathematics founded by 
Claude Shannon in the 1940s. 

 Information theory sets up 
quantitative measures of 
information and of the capacity 
of various systems to transmit, 
store, and otherwise process 
information.

 Usage: communication, 
compression, cryptography, 
computer science, biology, 
psychology, neuroscience, etc.
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Entropy

 The entropy of a system is the amount of 
uncertainty about the state of that system.  

 The entropy is measured by the number of bits 
required to fully describe the state of the system.

 Other symbols may easily be transformed to bits 
e.g. English letters may be represented by 5 bits.

 Could also be thought of as the number of yes/no 
questions required to establish full understanding. 

This type of entropy is also termed Shanon’s entropy or Information entropy to 
distinguish it from the entropy used in Thermodynamics 

Simple example: coin flipping I

 A coin flip results in either heads or tails. We 
can mark the outcomes using 1 bit:

Head = 0 Tail = 1 

 Following this encoding scheme, the following 
sequences of coin flips are equivalent:

H,H,T,H,T  00101

 Exactly 1 bit is required to represent each toss.

Simple example: coin flipping II

 Assuming that we flip two coins simultaneously, 
we can encode the outcomes as:

 Following this encoding scheme the following 
sequences of coin flips are equivalent:

00101110 

 Exactly 2 bits are required to represent each toss.

Coin A H H T T

Coin B H T H T

Encoding 00 01 10 11

Trial 1 2 3 4

Coin A H T T T

Coin B H H T H
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Simple example: coin flipping III

 What happens if we don’t care about the order?  
We only care if we got both heads, both tails, or a 
mixed pair.  

 The probability of each of these outcomes:
both heads - 25%
both tails - 25%
mixed - 50%

 We will use the following encoding scheme:
mixed - 0
both heads - 10
both tails - 11

 Following this encoding scheme the following 
sequences of coin flips may be encoded as:

100110 

 The average number of bits we use:

Both heads: 0.25 x 2 bits = 0.5 bits
Both tails: 0.25 x 2 bits = 0.5 bits
Mixes: 0.5   x 1 bit = 0.5 bits

1.5 bits

Simple example: coin flipping IV

Trial 1 2 3 4

Coin A H T T T

Coin B H H T H

Entropy & Information

 The entropy of a system is the uncertainty
about the state of that system.  It is the expected 
number of bits required to fully describe the state 
of the system.

 In the final two-coin-flip example, we had a 1.5 bit 
uncertainty about the outcome.

 Information is, quite simply, the amount our 
uncertainty is reduced given new knowledge.

 In the two-coin-flip example, if we got new knowledge that 
the two coins flipped were the same, we will gain 0.5 bits of 
information (as there is only 1 bit of uncertainty left).
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Entropy

 Entropy is the expected length in bits of a binary 
message conveying information

 Other common descriptions of the term: code 
complexity, uncertainty, missing/required 
information, expected surprise, information 
content, etc.

 Historically, entropy was defined in classic 
thermodynamics as the “amount of un-usable 
heat in system” and in statistical thermo-
dynamics as the “measure of the disorder in the 
system”, the two were proven to be equivalent.

Shannon Information

 Smallest unit of information is the “bit”

 1 bit = the amount of information needed to 
choose between two equally-likely outcomes 
(e.g. flip a coin)

 Properties:
 Information for independent events adds

 Information is zero if we already know the outcome

Shannon Information: Surprise I

1 2 1 2( , ) ( ) ( )p r r p r p rIndependent events:

1 2 1 2( ( , )) ( ( )) ( ( ))h p r r h p r h p r 

The surprise of a single event is high for unexpected 
(low probability) events and low for expected events.

Implies:

2( ( )) log ( ( ))h p r p r 

1 1

2 2

( ) 1 ( ( )) 0

( ) 0 ( ( ))

p r h p r

p r h p r

  
  
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Shannon Information: Surprise II
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Logarithms – useful formulas
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Entropy - definition

 Entropy is the mean value of the information 
over all possible observations

 In the discrete case:

2( ) ( ) log ( )
x

H X p x p x 

2( ) [ log ( )]pH X E p x 
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Example: a two outcome event I

 The entropy of the result of a fair coin toss:

 The entropy of an unfair (99% head) coin toss: 

2 2[0.5 log (0.5) (1 0.5) log (1 0.5)]

[ 0.5 0.5] 1

H       
    

2 2[0.99 log (0.99) (1 0.99) log (1 0.99)]

[ 0.0144 0.0644] 0.08

H       
    

Example: a two outcome event II
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2 2[ log ( ) (1 ) log (1 )]H p p p p      

 In the general case:

Entropy properties

 Entropy is always positive

 Entropy is maximum if p(r) is constant
 Least certain of the result

 Entropy is minimum if p(r) is a delta function

 The higher the entropy, the more you learn (on 
average) by observing values of the random 
variable

 The higher the entropy, the less you can 
predict the values of the random variable
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Calculating Entropy: 
The simple case

 If all n possible outcomes of situation X are 
equally probable, then our uncertainty about which 
one will occur can be calculated by: 

H(X) = log2(n) bits

 Out of gold eight coins, one of which is a fake, 
while you know the other seven are real.  You 
know the fake one has a different weight than the 
rest.  How many weightings on a balance scale 
will it take to determine the fake?  What if you only 
had seven coins with one fake? What if you had 
nine coins with one fake?

Encoding based on entropy I

 Suppose we have 4 symbols: A C G T with 

 The symbol probabilities are:

Pa=0.5 PC=0.25 Pg=Pt=0.125

 Leading to surprises: 

ha=1bit hc=2bit hg=hT=3 bit

 Thus the mean uncertainty of a symbol is:

H=1*0.5+2*0.25+0.125*3+0.125*3=1.75 bit

Encoding based on entropy II

 One option for encoding uses 2 bits for each 
symbol: A=00 C=01 G=10 T=11

 In the other option the number of binary digits 
equals the surprise: A=1 C=01 G=000 T=001

 So the string ACATGAAC which has 
frequencies the same as the probabilities 
defined above, is coded as:

Method 1 0001001110000001 16 (2 bits per 
symbol)

Method 2 10110010001101 14 (1.75 bits 
per symbol)
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Encoding based on entropy III

 In this specific case, can we find a better 
(shorter) encoding ?

 In the general case, how can we formulate the 
optimal encoding ?

 These questions are handled under the data 
compression topic…

Elements of Information Theory, T. Cover & J. Thomas, Chapter 5. 

Outline

 Entropy

 Mutual information

 Continuous variables

Joint entropy

2( , ) ( , ) log ( , )
y Y x X

H X Y p x y p x y
 

 

( , ) 2( , ) [ log ( , )]p x yH X Y E p x y 

 The joint entropy may be considered a 
single vector valued random variable:

 In the discrete case:
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Conditional entropy

Same formulation, but using the conditional density:

The conditional entropy chain rule

Proof:

Thus:

( , ) ( ) ( | ) ( ) ( | )H X Y H X H Y X H Y H X Y   
( | ) ( | ) ( ) ( )H Y X H X Y H Y H X  

Mutual information I

 The entropy tells us how much we can 
learn (therefore how much we don’t know)

 The mutual information between r and s is:
 How much  do we learn about r by observing s?
 How much more do we know about r after 

observing s?
 How much easier is it to predict r after 

observing s?

 Therefore: How much has the entropy of r
decreased after observing s?



10

Mutual information II

 Mutual information = How is the entropy of r
decreased by knowing s?

( | ) ( , ) log( ( | ))noise
r s

H H R S p r s p r s   
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The doctor example I

 We’re back to the doctor who need to 
distinguish between:
 The flu p(x1)=0.9 
 Severe infection p(x2) =0.1

 He has two tests: 

 Which test gives more information about 
the state of the patient?

Blood test Y Flu Infection

Positive 0.2 0.7

Negative 0.8 0.3

Urine test Z Flu Infection

Positive 0.1 0.5

Negative 0.9 0.5

The doctor example II

P(y+)=0.9*0.2+0.1*0.7=0.25 P(y-)=0.75
P(z+)=0.9*0.1+0.1*0.5=0.14 P(z-)=0.86

H(X)=-(0.9*log2(0.9)+0.1*log2(0.1))=0.436

I(Y;X)=0.9*0.2*log2(0.2/0.25)+0.9*0.8*log2(0.8/0.75)+
0.1*0.7*log2(0.7/0.25)+0.1*0.3*log2(0.3/0.75)=0.0734

I(Z;X)=0.9*0.1*log2(0.1/0.14)+0.9*0.9*log2(0.9/0.86)+
0.1*0.5*log2(0.5/0.14)+0.1*0.5*log2(0.5/0.86)=0.0621

Thus, the blood test is more informative…
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Properties of mutual information I

 Zero if r and s are independent

 Cannot be more than the entropy

 Cannot be increased by math alone

( , ) ( ) ( ) ( , ) 0p r s p r p s I R S  

( ( ), ) ( , )I f R S I R S

( , ) ( ) ( , ) ( )I R S H R I R S H S 

This is critical: holds true FOR ANY f(), so no transmission 
line, neural network, or laboratory computation (no matter 
how clever) can ever squeeze out more information.

Properties of mutual information II

 I(X;Y)=H(X)-H(X|Y)

 I(X;Y)=H(Y)-H(Y|X)

 I(X;Y)=H(X)+H(Y)-H(Y,X)

 I(X;Y)= I(Y;X)

 I(X;X)=H(X)

Entropy and Mutual information

I(X;Y) H(Y|X)H(X|Y)

H(Y)
H(X)

H(Y,X)
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Relative entropy ≡
Kullback Liebler (KL) divergence

• The excess message length needed to use p(x) -
optimized code for messages based on q(x) 

Relative entropy properties


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

Additional (in) equalities

 D(p||q)≥0 (information inequality)

D(p||q)=0 iff p(x)=q(x) for every x

 I(X;Y)≥0 (Non negativity of mutual information)

I(X;Y)=0 iff Y & X are independent

 H(X|Y)≤H(X) (Conditioning reduces entropy)

 (Independence bound)

Mostly proved by: If f is convex  Ef(X)≥f(EX) (Jensen inequality)

n

1 2 n i
i=1

H(X ,X ,...,X ) H(X )
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Outline

 Entropy

 Mutual information

 Continuous variables

Elements of Information Theory, T. Cover & J. Thomas, Chapter 9. 

Continuous variables

 A real number has an infinite number of bits, 
therefore theoretically, infinite information. 

 However, there is always noise (or quantization) 
which defines a number of discriminable levels

Entropy & Differential entropy

 Usage of probability density instead of probability

 Note: for Δr0 the log diverges…

2 2( ) lim { ( ) log } ( ) log ( )rh r H r r p r p r dr    
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Differential entropy

 Example 1: Uniform distribution (interval [0,a])

Note: for a<1 the differential entropy is negative

 Example 2: Normal distribution (µ=0,σ)

2 2 2 2/ 2 / 2 2
2

1 1 1
( ) log log (2 )

22 2
x xh x e e dx e   

   
     

 

2( ) ( ) log ( )h x p x p x dx 

2 2 2

0

1 1 1
( ) log log log

a

h x dx a
a a a

    

Entropy of a sampled 
continuous variable

 Following a n bit quantization of the variable 
(i.e. accuracy of 2-n)

H(X)=h(X)-log(2-n)=h(X)+n

 Example: a uniform distribution over the 
interval [0,1] with a resolution of ~0.001
H(X)=log2(1)+log2(1000)~10

 Example: a uniform distribution over the 
interval [0,¼] with a resolution of ~0.001
H(X)=log2(¼)+log2(1000)~8
Since the first two bits are always 0.

Neurophysiological based 
information theoretic questions

 How much information do the neurons convey?

 How much information is conveyed through a spike?

 How much does spiking activity tell us about a stimulus?

 Is the neural representation optimal?

 Is the information encoded by a neuronal population 
redundant?

 Can rate by itself encode all the information?

 Is there and if so, what is the theoretical limit on the 
information in the nervous system?

These hard questions will be addressed only in the next lesson…


