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Modeling our measurements

= Repetition of the same experiment will not lead
to the exact same response.

m Example: The spike train of a neuron in
response to stimuli is different...

= Typically we would like to know:
e When is something unexpected?
e What are the “normal” values?

= Thus, analyzing a sequence of measurements
requires modeling of the underlying process.




Stochastic process
Definition

= Stochastic — (1) Involving chance or
probability (2) Random (3) Non-deterministic

(Merriam-Webster & Wikipedia).

= Stochastic process - an indexed collection of
random variables {Xj}, where the index i
ranges through an index set /, defined on the
probability space (Q, P). The index set may be
discrete or continuous wikipedia).

Stochastic process
Special cases

= A stochastic process defined over the time
interval domain is called a time series.
e Example of a continuous time series:
temperature in BIU throughout the day.
e Example of a discrete time series:
amount of rain in BIU on a specific day on of the year.
e Example of a quantized discrete time series:
did rain fall in BIU on a specific day of the year?
e Example of discrete non-time series:
height of people entering Gonda building each day

= A stochastic process defined over the space
interval domain is called a random field.

Stationary processes
Strict / Strong

= A stochastic process whose unconditional joint
probability distribution does not change when
shifted in its index (typically time).

Fx(Zty4rs ey Tty4r) = Fx(2ey,...,2,,) foralrty,...,t, € Randforalln

= Probability density function (PDF) — p(x) describes the
distribution of a continuous random variable, x.

ffomp(x)dx =1
= Cumulative function: F(x) = ffmp(y)dy
= Survivalfunction :  1-F(x) = [ p(y)dy

= N order stationary process is defined for all n={1, ... N}




Stationary processes
Wide-sense / Weak

= A weak or wide-sense stationary (WSS) process

only is a second degree stationary process.

= Equal mean value

E(X(D) = te (©) = pu(t + 1) V7 € R
= Covairance dependent only on index difference

E(X(t) — e (tr) - (X (&) — e (£)) = Cov (X (£1), X(t2))

= Cov(X(t; + 1), X(t; + 1)) = Cov(X(t; — t,), 0)

Stationary processes - examples

= Stationary example: Sequence of L/R button
presses. Each press has a 90% probability of
being in the same direction as its predecessor.
e Stationary despite strong temporal covariance.

= Non-stationary example: Amount of rainfall for
each day of the year.

e In many cases long term changes may be removed
using de-trending techniques.

Ergodicity

= [f averaging over time and space are equal the
process is ergodic.

= Ergodicity is usually described in terms of
properties of an ensemble of objects.

= Example: Finding out how people spend their
spare time. Sampling one person over 1000
days would yield the same result as sampling
1000 people once in an ergodic system.

Reading material:
http://news.softpedia.com/news/What-is-ergodicity-15686.shtml




Ergodic & stationary processes

= |n an ergodic process, the following are equal
e Averaging across repeated trials
e Averaging across time for a single trial

= An ergodic process is always stationary, the
reverse may not be true

= A stationary process is ergodic if samples that
are far enough in time are independent
(asymptotic independence).
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Intracellular vs. Extracellular
neuronal potentials

« Intracellular soma

AWLO AW

« Extracellular
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Extracellular spike trains

= Transformation from a continuous recording to a
series of discrete timestamps.

= |s all the information contained in the timing of
the spikes?

= What are we losing?
e Spike shapes
e Non spiking activity
e Sub-threshold activity
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Time series & Point processes

= Continuous time series
e Electroencephalogram (EEG)
e Electromyogram (EMG)
e Intracellular potential
e ...

(Note: “Continuous” is the common term but is misleading
since it applies to both discrete and continuous in time)

m Stochastic point processes
e Neural action potentials
e Heart beats
e Behavioral events
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Delta functions (reminder)

= Dirac’s delta function

S(x—1)=0x#1

f&(x—r)dx =1

= Kronecker’s delta function

6(n—k)={(1)zz]]z Z sy =1
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Point process

= The spike train is represented by the sum of
Dirac’s delta functions at its firing times (t;)

p(®) = 8(t-t)
i=1

= Point processes are unitary events in time.
The actual values in time are meaningless.
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Properties of a single spike train

= Firing rate

m Response to events
m Firing pattern

= Exact timing

= Entropy
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The neural transformation

o~ TS~ 00— - o

x(t) = external signal
r(t) = spike rate
p(t) = actual spikes

We observe p(t), and we need to estimate r(t)

(eventually we will use this to estimate x(t))
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Firing rate definition

m There are different definitions to firing rate

e r —rate over the whole period T also called
spike count rate

e <r> - rate averaged over all the trials, also
called average firing rate

e r(t) —trial average rate over a short period
(At>0)

and they are constantly mixed...
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Firing rates — number of spikes
Firing rate: r =1 = %fg"p(f)dr.
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From: Theoretical neuroscience /Dayan & Abbott
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Convolution

= Convolution is an operator which takes two
functions fand g and produces a third function
that represents the overlap between fand a
reversed version of g.

= Continuous: (f*g)(t) = ff(f)gfi —7)dr

= Discrete: (f*g)(m)=>_ f(rig(m —n)
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Convolution examples
= Convolution of a box function
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= Convolution of a spiky function
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(From: www.wikipedia.org, Brian Amberg)
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Convolution & Moving average

A convolution is a general moving average when

the averaging function integral is 1.

In that case it functions as a smoothing function.

When the averaging function is square it will
function as regular mean using overlapping bins.

Non-square functions enable emphasis of parts

of the window.
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Firing rates - sliding windows

Other definitions of firing rate use a sliding
window: r(t) = [22, drw(7)p(t — 7), with
1

w(t) = ot —Atf2 <t < A2

(1) . ex —t2 )
w = e
V270w B 202,

Sliding rectangular window
At =100 ms

Sliding Gaussian window
g, =100 ms

Firing rates - causal windows

Temporal averaging with windows is non-
causal. A causal alternative is w(t)=[c? t e 1],
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Smoothing & Convolution

= Smoothing and convolution pitfalls

e Introduces spurious correlations over time

e Hidden assumption about smoothness of
the external sensory or motor data

o Edge effects: what happens at the start
and end of the data?

e Phase lag: peaks of smoothed data may
occur later than the peaks in the original
data. True for non-symmetric kernels and
all causal filters
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Tuning curves

= r() can be a function of something other than time. e.g.
r(angle) if the rate varies with direction of hand movement

= r(x) will still be time-varying if the argument x changes
with(tim)e as x(t). It can also change dependence on x, if
r=r(x,t).

= Describes the "tuning" of the neuron. x can be a scalar,
vector, or function (pattern)

= Atuning curve is a model for the neuron's behavior, and
is always an approximation since neurons are likely to
have multiple inputs and respond to multiple internal and
external variables.
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Sensory tuning curves

= For sensory
neurons, the firing
rate depends on the
stimulus s

= Extra cellular
recording V1
monkey

= Response depends
on angle of moving (5 = $2max
light bar =T

= Average over trials
is fitted with a
Gaussian
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Motor tuning curves

@
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- omow s
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s (movement direction in degrees)

Extra cellular recording of monkey primary motor
cortex M1 in arm-reaching task. Average firing rate is
fitted with 7(s) = 1o + (0 cos(maxpmax
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Spike count variability

= Tuning curves model average behavior.

= Deviations of individual trials are given
by a noise model.
o Additive noise is independent of stimulus
r(s)=f(s)+ ¢
e Multiplicative noise is proportional to
stimulus

r(s) =f(s) + g(s)-¢
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Signal to noise ration

= Power of the signal (mean square)

. 1oN 2 . 1,T_o
Discrete E2i=1xi Contiuous ?fn X;

= Amplitude of the signal (root mean square)
Discrete |~YN_ x;2 Contiuous lfT x;2
N&i=1t 7o Xi

= The signal to noise ratio (SNR) may be calculated

ms(signal) (rms(signal) 2
ms(signal) rms(signal)

directly:

= However, typically a decibel (dB) scale is used...
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Decibel (dB) g

= The decibel (dB) is a logarithmic measure of
the ratio between two quantities:

ms(signal)
ms(signal)

rms(signal)
rms(signal)

SNRyg = 10log,, or 20logy,

= SNR of 3 dB is roughly double the power while
10 dB is ten times the power.

= SNR of 6 dB is roughly double the amplitude
while 20 dB is ten times the power.

33



12

Overview

m Stochastic processes
m Extracellular recording

= Point processes

Recommended reading:
R. Lemon, Methods for neuronal recording in conscious animals, 1984, Chapter 2
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Formation of extracellular potential |

= Different membrane potentials of the neuron
lead to flow of current within the neuron which
is matched by an extracellular return current.

action potential

axon

potential [ *
difference o

Sink — Active area, current flows into the neuron
Source — Inactive region, current flow out of the neuron.
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Formation of extracellular potential Il
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Somatic extracellular spike shape

= Soma - Biphasic
shape (-/+), o0
e Negative due to flow T
from the initial
segment

o Positive due to flow
to dendrite. 3.

= Magnitude is 5
proportional to
surface area divided

by the distance.
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Decay of extracellular signal
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Extracellular recording Il
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Multiple units

= The electrode detects multiple
neurons (also called units) which
are close to its tip.

= The signals differ in:

o Amplitude -dependent on cell size
and distance.

o Phase shape - depends on direction
to soma, axon & dendrites.

e Temporal shape - dependent on cell

type.
%

= Spikes from the same neuron also
vary significantly due to noise,
bursts, drift of electrode, etc..

42
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Sorting multiple units

Projection on 1st PC
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Continuous signal >

multiple spike trains (single units)

Analog data
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Multiple units
= Multiple single units
= Multi-unit activity
m Local field potential
45
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Intracellular vs. Extracellular
neuronal potentials

« Intracellular soma

« Extracellular

« Intracellular axon

46

Spike trains

= Transformation from a continuous
recording to a series of discrete
timestamps.

= Is all the information contained in the
timing of the spikes?

= What are we losing?
e Spike shapes
o Non spiking activity
e Sub-threshold activity
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