Clustering

Signal analyses

What are clustering algorithms?

What is clustering ?
Clustering of data is a method by which large sets of data is
grouped into clusters of smaller sets of similar data.
Example: 200 o000
The balls of same color are clustered into a group as shown
below :
0000 000

Thus, clustering means grouping of data or dividing a large
data set into smaller data sets of some similarity.

Outline

+ K-means
+ EM — Expectation Maximization

* Nonparametric pairwise similarity
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Supervised vs. unsupervised learning

* Supervised Learning
— Classification: partition examples into groups
according to pre-defined categories
— Regression: assign value to feature vectors
— Requires labeled data for training
* Unsupervised Learning
— Clustering: partition examples into groups when no
pre-defined categories/classes are available
— Novelty detection: find changes in data
— Outlier detection: find unusual events
— Only instances required, but no labels
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What is a good clustering?

* Internal criterion: a good clustering will produce
high quality clusters in which:
— the intra-cluster similarity is high
— the inter-cluster similarity is low
dependence on representation and the similarity
measure used

+ External criterion: The quality of a clustering is
also measured by its ability to discover some or
all of the hidden patterns or latent classes

Fiting rate {spikes/s]

Cell identification in the striatum

Mice Rats




How hard is clustering?

* One option is to consider all possible clusters, and
pick the one that has best inter and intra cluster
distance properties

« Suppose we are given n points, and would like to
cluster them into k-clusters, the number of clusters is:

K
k!

« Too hard to do it optimally using brute force...
« Solution: Iterative optimization algorithms

Clustering methods

* Hierarchical

— Agglomerative (bottom-up)
— Divisive (top-down)
« Partitioning h%

PR AT P R T e
— K-means

— Mixture of Gaussians

Hierarchical clustering
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Hierarchical clustering

Data with clustering order Dendrogram representation
and distances

K-means clustering

Goal: partition the dataset into K disjoint “clusters” of data points
Algorithm
- Start with random guess of where the K cluster centers my;---mj-are
- Repeat the following until cluster centers stop changing

- assign each data point to the nearest cluster

(n)

pln k)=1 ifdatapoint x'" is closer to m;, than to any other m .

- move each cluster center to the mean of all data points assigned to it

3 p(nk)x'™  « Vector sum of ail data points assigned to cluster k
n

m; ==
- > plik) +— Count of all data points assigned 1o ciuster k
" nk
mg = S,,“"” k lx' ' Wwhere w(n klé%

lllustration of K-means clustering
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lllustration of K-means clustering

assign data points
to cluster centers

initialization

lllustration of K-means clustering

assign data points

final result
to cluster centers

after convergence

initialization
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How to measure the distance

Euclidean distance (L, norm):

Ly (3= (x,-x,')
i=l
* L1 norm distance
L%, %)= Z|\ =%
i=
» Cosine distance
os( X, X'") 7'f'f'
¢ > X ? 3 - -~ =
_ %] 1%
» Cross correlations: Pearson’s distance

> (=X —Y)

{6 —0Y- v

d(x.y)=(1-CC)=1-




Comments on the K-means Methods
Strength of the K-means:

* Relatively efficient: O(tkn), where n is the number of objects,
k is the number of clusters, and t is number of iterations.
Normally, kit <<n.

« Often terminates at a local optimum.
Weakness of the k-means:

« Applicable only when mean is defined, then what about
categorical data?

* Need to specify k, the number of clusters, in advance.
« Unable to handle noisy data and outlines.

*Not suitable to discover clusters with non-convex shapes.

Soft Clustering

« Clustering typically assumes that each instance is given
a “hard” assignment to exactly one cluster.

* Does not allow uncertainty in class membership or for an
instance to belong to more than one cluster.

« Soft clustering gives probabilities that an instance
belongs to each of a set of clusters.

« Each instance is assigned a probability distribution
across a set of discovered categories (probabilities of all
categories must sum to 1).

Spike sorting Il




A better algorithm: Mixture-of-Gaussians clustering

When the data vectors are clustered, it is more appropriate to fit a distribution
with multiple peaks. Consider the mixture-of-Gaussians distribution:

1
plxim .. W glzzzgi(mm.-ff.)
. * 4

mixture Gaussian distributions, with
distribution means and covariances m, .V,

How do we fit such a distribution to a set of data vectors x®'...x*) ? If we knew
which Gaussian is “responsible” for each data vector, we could compute the mean
and covariance separately for each Gaussian - from the vectors it is responsible for.
This suggests the following iterative algonthm (the EM algorithm)

Iterate the following two steps until convergence:
Expectation (E-step): Compute P(x; | E(g)) for each example
given the current model, and probabilistically re-label the
examples based on these posterior probability estimates.
Maximization (M-step): Re-estimate the model parameters from
the probabilistically re-labeled data.

Expectation maximization

Compute the probability p(n k) that data point n came from Gaussian k,
and the normalized weights w(n,k) which sum to 1 for each Gaussian

n\ / " | Z
p(nk)=g(x '}/:g_, (=") 'n'(mk)zp(n.kjj‘:p[;.k]
i foi
2. Re-compute the mean and covariance of all data points that Gaussian k
is responsible for, using w(n k) as weights:
r
m, = En'{u‘klxm' V,= Eu‘l.mk)(x "—m, )(x" -m,

3. Repeat until m, V no longer change

Example of Mixture-of-Gaussians clustering

3 clusters 5 clusters

bibowaes

~




Comparison of the two algorithms

In both cases, we compute a quantity p(n k) that tells us how well data point n
fits in cluster k. Then we compute the normalized weights

and re-compute the cluster centers according to weighted center-of-mass calculation

m,=S\|'{n,k}x[":

There are two differences

1. In K-means the “fit’ p is either 1 or 0, depending on which is the nearest cluster;
In MOG, the values of p vary continuously between 0 and 1, and correspond to
probabilities

2. In MOG we also re-compute the covariance matrix, which in turn affects how we
determine the fit of data points to clusters;
In K-means, the fit is always computed in the same way, corresponding to the
assumption of circular clusters

Mixture-of-Gaussians vs. K-means clustering

The results are similar when the clusters are
well-separated and reughly circular

Mixture-of-Gaussians vs. K-means clustering

The results are similar when the clusters are But for more complex problems K-means
well-separated and reughly circular can be fooled more easily




A new nonparametric pairwise
clustering algorithm based on iterative
estimation of distance profiles

Shlomo Dubnov, Ran El-Yaniv, Yoram Gdalyahu,
Elad Schneidman, Naftali Tishby, Golan Yona

CS at HUJI

Hierarchical algorithm

We start with a set of data points {1,2, ..., n}

* A symmetric proximity matrix M = (d;) ;=1
is given where d is the pairwise (dis)similarity
between points i and j.

If v =(vq,V,,...,v,) is an n-dimensional vector
then the length of the vector is ||v||

We define dist (u,v) as the proximity measure
between two given vectors in sample space

* A 2 step transformation of the similarity
matrix:

— Normalization: for each data point i we define
the distance from all the other points

d; = (dy, dp, . . ., d;,) (d;is the i column of M)
then each d; is divided by its norm ||d /| so that
P; = (Pis Pis - - - » Pin) Where P = d;/|ld/|

— Re-estimation: recalculate the distance between
points i and j d"w;=dist(p;, p;).

10



new — Anew ii=
o Mrew  =dmew, where i,j=1.n

e Turns out that this algorithm converges fast to
a two-valued matrix!

How do we define a distance
between two distributions?

* The Kullback — Leibler (KL) divergence is a statistical
measure between distributions

+ For 2 distributions p; and p; the KL divergence is:

ik
DKLIP:’"I);'] = E pir log, P
% 7 jk

I

* However this measure is asymmetrical and unbound

The Jensen-Shannon divergence

» Given two empirical probability distributions
(samples) p(x) and q(x) their J-S divergence is
defined as:

DB [ p(0)llg(x)] = ADXE [ p(x)|Ir(x)] + (1 — D (g () |Ir(x)]

where  rix) = ip(x)+ (1 —i)gix)
d™ = DP¥lpillps)

1 - , - ]
=3 (Lp,‘ log Pix + L Pik log Pit )
= \x k

f,lp,* + pjr) 5"'11 + Pix)
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Step 1. Each point is represented by its relation to all
other data points

Step 2. the pairwise distance is re-estimated using a
statistically motivated proximity measure.

(d dn 4. | Eachvector of distances is transformed into a
o= = 1 g i — Probability distribution over the set of data points
\Zpdy Zidy Tady ) By normalizing it using the L, norm.

o s The Jensen-Shannon divergence is a modification on the
d.'f" W= ,")] - I}) p ] Kullback-Leibler (KL) divergence. It is used to measure
¥ ol b The statistical similarity between the distributions p; and p;

Data points
sampled from
two
Gaussians

Cross-validated pairwise hierarchical
clustering

« Randomly partition data set S into 3 subgroups
|S1] = |S2| = |S3|=n/3 S=S1US2US3
Let A=S1US2 and B=S2US3
Sothat ANB=82

Run the algorithm on A and B and count m — the points in
S2 that were clustered similarly in both runs

Define  p=m/S2| the cross validation index

The cross validation index will be large for structured data set
and small for unstructured data set.

12



Cross-validated pairwise
hierarchical clustering

p=0.95

200 -100 O 100 200
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Cross-validated hierarchical clustering
of three concentric rings.

i = _ { il
be - - 3
oses o L,
Fassro s
05 l| ¢
- T
am
\ / \‘l‘-..
i [ E !- T -
o 3 o
v o { d°
- - ..
- o
oo 6 e = < 0 = s50 -
s / \ / \

How to apply this method to
neural activity

Cohen, D. and Nicolelis, M. A. JNS (2004).

Calculating the distance between two trials

r v
e r The probability that a neuron fired v spikes while its average
(1 4
f (\’ r ): ' firing rate is r, was calculated assuming a Poisson distribution
wi

The rate vector that is most likely to yield a
given spike count during two independent
2 trials (v;v)) is the average of the two spike

counts.

o,
\
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The similarity of two trials d; is taken as the

— 27 " ofy . i

("‘-’.-' - ]ug[ II I." (1 i P }' f (1n..u' Toif )] log-probability that the corresponding spike
L count vectors were generated independently

by the same maximum likelihood rate vector
calculated for all the neurons together.

dy=X (lug(f’(\', i ])+ Ing(."ﬁ-,,_, I ))) d; is called the similarity matrix
fd . 4 Eachvector of distances is transformed into a
o=l -, - . .. B Probability distribution over the set of data points
\Xidy X,dy Tpdy ) By normalizing it using the L, norm.
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Classification according to degree of similarity
during movement

Measure of similarity classification
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Classification according to degree of similarity
during the waiting period
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Dimensionality reduction

* For example:
—-PCA
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