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Clustering

Signal analyses

What are clustering algorithms?

What is clustering ?

Clustering of data is a method by which large sets of data is 
grouped into clusters of smaller sets of similar data.

Example: 

The balls of same color are clustered into a group as shown 
below :

Thus, clustering means grouping of data or dividing a large 
data set into smaller data sets of some similarity. 

Outline 

• K-means

• EM – Expectation Maximization

• Nonparametric pairwise similarity
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Spike sorting I
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Spike sorting II

Supervised vs. unsupervised learning

• Supervised Learning
– Classification: partition examples into groups

according to pre-defined categories
– Regression: assign value to feature vectors
– Requires labeled data for training

• Unsupervised Learning
– Clustering: partition examples into groups when no

pre-defined categories/classes are available
– Novelty detection: find changes in data
– Outlier detection: find unusual events 
– Only instances required, but no labels
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Supervised classification
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What is a good clustering?

• Internal criterion: a good clustering will produce 
high quality clusters in which:
– the intra-cluster similarity is high
– the inter-cluster similarity is low
dependence on representation and the similarity 

measure used

• External criterion: The quality of a clustering is 
also measured by its ability to discover some or 
all of the hidden patterns or latent classes

Cell identification in the striatum
Mice Rats
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How hard is clustering?

• One option is to consider all possible clusters, and 
pick the one that has best inter and intra cluster 
distance properties 

• Suppose we are given n points, and would like to 
cluster them into k-clusters, the number of clusters is:

• Too hard to do it optimally using brute force…
• Solution: Iterative optimization algorithms

!k

k n

Clustering methods

• Hierarchical 
– Agglomerative (bottom-up)

– Divisive (top-down) 

• Partitioning 
– K-means

– Mixture of Gaussians 

Hierarchical clustering
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Hierarchical clustering

Data with clustering order
and distances

Dendrogram representation
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How to measure the distance

• Euclidean distance (L2 norm):

• L1 norm distance

• Cosine distance

• Cross correlations: Pearson’s distance

 








22 )()(

))((
11),(

yyxx

yyxx
CCyxd

ii

ii
ii



7

Comments on the K-means Methods

Strength of the K-means:

• Relatively efficient: O(tkn), where n is the number of objects, 
k is the number of clusters, and t is number of iterations. 
Normally, k,t << n.

• Often terminates at a local optimum.

Weakness of the k-means:

• Applicable only when mean is defined, then what about 
categorical data?

• Need to specify k, the number of clusters, in advance.

• Unable to handle noisy data and outlines.

•Not suitable to discover clusters with non-convex shapes.

Soft Clustering

• Clustering typically assumes that each instance is given 

a “hard” assignment to exactly one cluster.

• Does not allow uncertainty in class membership or for an 

instance to belong to more than one cluster.

• Soft clustering gives probabilities that an instance 

belongs to each of a set of clusters.

• Each instance is assigned a probability distribution 

across a set of discovered categories (probabilities of all 

categories must sum to 1).

Spike sorting II
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Iterate the following two steps until convergence:
Expectation (E-step): Compute P(xi | E(g)) for each example 
given the current model, and probabilistically re-label the 
examples based on these posterior probability estimates.
Maximization (M-step): Re-estimate the model parameters from 
the probabilistically re-labeled data.

Expectation maximization
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A new nonparametric pairwise 
clustering algorithm based on iterative 

estimation of distance profiles

Shlomo Dubnov, Ran El-Yaniv, Yoram Gdalyahu, 
Elad Schneidman, Naftali Tishby, Golan Yona

CS at HUJI

• We start with a set of data points {1,2, …, n}

• A symmetric proximity matrix M = (d ij) i,j = 1..n

is given where dij is the pairwise (dis)similarity 
between points i and j. 

• If v = (v1,v2,…,vn) is an n-dimensional vector 
then the length of the vector is ||v||

• We define dist (u,v) as the proximity measure 
between two given vectors in sample space

Hierarchical algorithm

• A 2 step transformation of the similarity 
matrix:

– Normalization: for each data point i we define 
the distance from all the other points

di = (di1, di2, . . . , din) (di is the ith column of M) 

then each di is divided by its norm ||di|| so that

pi = (pi1, pi2, . . . , pin) where pij = di / ||di|| 

– Re-estimation: recalculate the distance between 
points i and j  dnew 

ij = dist(pi , pj ).
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• Mnew 
ij = d

new 
ij where  i, j = 1..n

• Turns out that this algorithm converges fast to 
a two‐valued matrix!

How do we define a distance 
between two distributions?

• The Kullback – Leibler (KL) divergence is a statistical 
measure between distributions

• For 2 distributions pi and pj the KL divergence is:

• However this measure is asymmetrical and unbound

The Jensen-Shannon divergence

• Given two empirical probability distributions 
(samples) p(x) and q(x) their J-S divergence is 
defined as:

where
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Each vector of distances is transformed into a 
Probability distribution over the set of data points
By normalizing it using the L1 norm.

The Jensen-Shannon divergence is a modification on the 
Kullback-Leibler (KL) divergence. It is used to measure
The statistical similarity between the distributions pi and pj

Step 1. Each point is represented by its relation to all 
other data points

Step 2. the pairwise distance is re-estimated using a 
statistically motivated proximity measure.

Data points 
sampled from 

two 
Gaussians 

Cross-validated pairwise hierarchical 
clustering 

• Randomly partition data set S into 3 subgroups

|S1| ≈ |S2| ≈ |S3|≈n/3 S = S1 U S2 U S3

A = S1 U S2   and    B = S2 U S3Let 

A ∩ B = S2So that

Define ρ =m/|S2| the cross validation index

Run the algorithm on A and B and count m – the points in 
S2 that were clustered similarly in both runs

The cross validation index will be large for structured data set 
and small for unstructured data set. 
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Cross-validated pairwise 
hierarchical clustering 
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Cross-validated hierarchical clustering 
of three concentric rings.

How to apply this method to 
neural activity

Cohen, D. and Nicolelis, M. A. JNS (2004). 

Calculating the distance between two trials

The probability that a neuron fired v spikes while its average 
firing rate is r, was calculated assuming a Poisson distribution

The rate vector that is most likely to yield a 
given spike count during two independent 
trials (vi,vj) is the average of the two spike
counts.

The similarity of two trials dij is taken as the 
log-probability that the corresponding spike 
count vectors were generated independently 
by the same maximum likelihood rate vector 
calculated for all the neurons together.
dij is called the similarity matrix

Each vector of distances is transformed into a 
Probability distribution over the set of data points
By normalizing it using the L1 norm.
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Measure of similarity classification
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Classification according to degree of similarity
during the waiting period 

Measure of similarity classification
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Dimensionality reduction

• For example:
– PCA


