Frequency domain

Due: June 25 10:00 AM.

1) Fourier transform (analytic +Matlab)

a) Calculate analytically the Fourier Transform of: $x(t) = \cos(2\pi at) \cdot \cos(2\pi bt)$, a, b > 0

You can use the following hint: cos(a)*cos(b) = 1/2*[cos(a-b)+cos(a+b)]

Consider the signal for a=10 and b=110: $x(t) = cos(2\pi \cdot 10 \cdot t) \cdot cos(2\pi \cdot 110 \cdot t)$

- b) Plot the signal over a time period of 2 seconds. (MATLAB)
- c) What is the minimal sampling rate required for calculating DFT of this signal without aliasing?
- **d)** Sample the signal at a sampling rate of 160 Hz for 2 seconds. Calculate the DFT of the sampled signal and plot its amplitude. Explain the results. **(MATLAB)**
- e) Sample the signal at a sampling rate of 250 Hz for 40 seconds. Calculate the DFT of the sampled signal and plot its amplitude. Explain the results. (MATLAB)

2) Fourier transform (Matlab)

MATLAB has a built-in sound file that you can load into memory by simply typing >> load handel. Executing this command will load several objects into the memory: y is the sound file, a N x 1 vector storing the waveform values at regularly-spaced samples, and Fs is the sampling rate, which is set to the default of 8192 frames/sec. This means that 8192 data points in the vector are equal to 1 second of music.

You can hear the sound by typing >> sound(y, Fs) if you have a sound card.

- a) Find the Fourier Transform of this signal and plot it as function of frequency in Hz.
- **b)** You'll notice that some frequencies are more prevalent than others. What are the 2 highest power frequencies in the song? What is their power?

3) Sampling theorem

A 200Hz sinusoidal signal is sampled at a rate of 240 samples/second. Spectral analysis of the sampled signal will reveal a peak at the following frequency:

- a. 40Hz
- b. 80Hz
- c. 120Hz
- d. 160Hz
- e. 200Hz

Explain your answer.