

IBG

Single Spike Train

- The last session focused on generating a statistical model of spike train generation.
 Specifically, the Poissonian neuron.
- This lesson will focus on statistical descriptors of spike trains and their relation to the underlying model of the spiking.

Overview

- Single ISI measures
- Multiple ISI measures

ISI: Other neuronal models
■ Regular neuron
■ Burster
■ Non homogeneous Poisson
BG
ISI cumulative distribution function
 $ \qquad \qquad \blacksquare \ \ \text{The cumulative distribution is:} \ P[t_{i+1}-t_i<\tau] $
■ For the Poissonian neurons:
$P[t_{i+1} - t_i < \tau] = \int_0^1 re^{-rt} dt = 1 - e^{-r\tau}$
 Survivor (survival) function
Survivor function = 1 - Cumulative sum of TIH $Survivor(t) = R(t) = 1 - \sum_{i=1}^{t} ISI(i)$
$P[t_{i+1} - t_i > \tau] = \int_{\tau}^{\infty} re^{-rt} dt = e^{-r\tau}$

 Overview
 ■ Single ISI measures
■ Multiple ISI measures
 IBG
 Multiple ISIs
 ■ In the Poissonian neuron, all the neuronal
 properties may be derived by the 1st order ISI.
 In other cases a measure of the 1st order ISI may be very different from a multi-ISI measure.
 For example CV vs. FF of a neuron firing doublets
 IBG
 First order ISIs vs. Multi-ISI
 ■ Shuffling → Permutation of the intervals.
 Compute the Fano factor before and after shuffling.
 If F=F_{shuffle} all the irregularity may be explained by the ISIs.
 ■ C _v remains the same

■ Value at t=0

Autocorrelation function

■ Wide-sense stationary (WSS) process

$$R(\tau) = \frac{\mathrm{E}[(X_t - \mu)(X_{t+\tau} - \mu)]}{\sigma^2}$$

Autocorrelation practicalities

$$Q_{\mathcal{C}}(\tau) = \sum_{i=1}^{n} \rho(t_i) \cdot \rho(t_i + \tau)$$

$$Q_{P}(\tau) = \frac{1}{n} \cdot \sum_{i=1}^{n} \rho(t_{i}) \cdot \rho(t_{i} + \tau)$$

Rate

$$Q_C(\tau) = \sum_{i=1}^n \rho(t_i) \cdot \rho(t_i + \tau)$$

$$Q_P(\tau) = \frac{1}{n} \cdot \sum_{i=1}^n \rho(t_i) \cdot \rho(t_i + \tau)$$

$$Q_R(\tau) = \frac{1}{n \cdot \Delta t} \cdot \sum_{i=1}^n \rho(t_i) \cdot \rho(t_i + \tau)$$

Autocorrelation practicalities

- Rate normalized version
 - $Q_C(\tau) = \sum_{i=1}^{n} [\rho(t_i) r] \cdot [\rho(t_i + \tau) r]$
- $\begin{array}{ll} \bullet & \text{Probability } Q_P(\tau) = \frac{1}{n} \cdot \sum_{i=1}^n [\rho(t_i) r] \cdot [\rho(t_i + \tau) r] \\ \bullet & \text{Rate} & Q_R(\tau) = \frac{1}{n \cdot \Delta t} \cdot \sum_{i=1}^n [\rho(t_i) r] \cdot [\rho(t_i + \tau) r] \end{array}$

Not as common...

		_
		_
		_

Relating to standard correlation

- Covariance $\mathcal{C}(\tau) = \frac{1}{n} \cdot \sum_{l=1}^{n} [\rho(t_l) r] \cdot [\rho(t_l + \tau) r]$
- Pearson $R(\tau) = \frac{1}{n \cdot (r r^2)} \cdot \sum_{i=1}^{n} [\rho(t_i) r] \cdot [\rho(t_i + \tau) r]$

IBG

Autocorrelation practicalities

- Normalization to rate / probability / count
- Normalization to 0 vs. absolute value
- Calculating the autocorrelation:
 - $\bullet~$ All spikes at distance τ from each spike.
 - Summation of ISI of all orders.

 Lo	ong term phenomena
	Firing rate fluctuates over time.
	t is crucial to examine the process on multiple timescales.
 IBG	Rate fluctuations will reflect as changes n the autocorrelation function.
Si	ngle spike train measures
t t	The ISI is typically a good measure on he regularity of firing and its fit to the Poisson distribution.
 -	The hazard function is a good measure of short term phenomena but cannot be used on long timescales.
 - r	The autocorrelation function is a good measure for identifying long-term ohenomena.
 IBG	
 A	ppendix
	The results of different measures are not as simple as they seem
	are not as simple as they seem

Typical autocorrelation in the pallidum
Multiple phases: 1) Refractory phase 2) Elevated phase 3) Oscillatory phase 4) Steady state
160 160 100 100 100 100 100 100 100 100
IBG 90 Offset (risec)
So is the neuron bursting/oscillating?
The spike trains do not reveal any evident bursts or an obvious oscillation.
The hazard function is (almost) flat (!?)
Simulations – simple case
0.000 (w) 1000 (w) 1000

p=0.1 and $\tau_r\text{=}6\text{ms}$

Firing rate without refractory period: 1000/10=100 spikes/s Firing rate with refractory period: 1000/(10+6)=62.5 spikes/s

Intuition ©

- The key is observing the probability of being in a refractory period (RP).
- $\blacksquare \ \ \, \text{Assuming RP of length } \tau_r \ \, \text{If at any time} \\ \, \text{during the last } \tau_r \ \, \text{ms there was a RP than the} \\ \, \text{probability for a new RP is reduces since there} \\ \, \text{couldn't have been a spike during the RP}.$
- The autocorrelation which reflects the firing rate behave as a negative reflection of the RP probability.

		_

