Single Spike Train

= The last session focused on generating a
statistical model of spike train generation.
Specifically, the Poissonian neuron.

= This lesson will focus on statistical descriptors of
spike trains and their relation to the underlying
model of the spiking.

Overview

m Single ISI measures

= Multiple ISI measures




TIH/ISI

m S| = Inter spike interval
e Time difference between adjacent
spikes

m TIH = Time interval histogram
e The histogram of the time difference
between adjacent spikes.

Homogeneous Poisson process
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ISI: Other neuronal models

= Regular neuron
m Burster

= Non homogeneous Poisson

ISI cumulative distribution function

= The cumulative distribution is: P[t;,, -t <7]

= For the Poissonian neurons:
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Survivor (survival) function

Survivor function = 1 - Cumulative sum of TIH

Survivor(t) = R(t) = l—i 1S1(i)
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Hazard function

Hazard function reflect the _ __Isi)
independent probability to fire at any Hazard(t) =h(t) = Survivor(t)
single point.
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process: ISI (Coefficient of variation)

average isi (ms)

MT and V1 oy=—"" 1
gV —
an macaque trefr (7_)




Overview

m Single ISI measures

= Multiple ISI measures

Multiple ISIs

= In the Poissonian neuron, all the neuronal
properties may be derived by the 1st order ISI.

m In other cases a measure of the 15t order ISI
may be very different from a multi-ISI
measure.

= For example CV vs. FF of a neuron firing
doublets...

First order ISlIs vs. Multi-ISI

= Shuffling > Permutation of the intervals.

» Compute the Fano factor before and after
shuffling.

m If F=Fgme all the irregularity may be explained
by the ISls.

= C, remains the same...




Consecutive intervals

If consecutive interval are independent the density resembles
An exponential multiplication.
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Correlation

= Covariance
Cov(X,Y)=E[(X —4)- (Y = ,)]
m Pearson correlation coefficient
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Autocorrelation function

m General definition
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m Wide-sense stationary (WSS) process
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= A common definition for spike trains (ayan & Abbott)
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Autocorrelation practicalities
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Autocorrelation practicalities

= Rate normalized version
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= Not as common...




Relating to standard correlation

= Covariance C(r) = %-Z[p(ti) —r]-[p(t; + 1) — 7]

i=1

m Pearson R(z) = ﬁ - Z[p(q) —1]-[p(t; + 1) — 7]
i=1

Autocorrelation practicalities

= Normalization to rate / probability / count
= Normalization to 0 vs. absolute value

= Calculating the autocorrelation:
o All spikes at distance t from each spike.
e Summation of ISI of all orders.

Example - Poisson
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Example - Burster
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* What about a pauser?

Example - Oscillator
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Long term phenomena

m Firing rate fluctuates over time.

m |t is crucial to examine the process on
multiple timescales.

= Rate fluctuations will reflect as changes
in the autocorrelation function.

Single spike train measures

= The ISI is typically a good measure on
the regularity of firing and its fit to the
Poisson distribution.

= The hazard function is a good measure
of short term phenomena but cannot be
used on long timescales.

= The autocorrelation function is a good
measure for identifying long-term
phenomena.

Appendix

The results of different measures
are not as simple as they seem...
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Typical autocorrelation in the pallidum

Multiple phases:

1) Refractory phase
) Elevated phase

) Oscillatory phase
) Steady state
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So is the neuron bursting/oscillating ?

= The spike trains do not reveal any evident
bursts or an obvious oscillation.

= The hazard function is (almost) flat (!?)
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Firing rate without refractory period: 1000/10=100 spikes/s
Firing rate with refractory period: 1000/(10+6)=62.5 spikes/s
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Intuition ©

= The key is observing the probability of being in
a refractory period (RP).

= Assuming RP of length 1, . If at any time
during the last t, ms there was a RP than the
probability for a new RP is reduces since there
couldn’t have been a spike during the RP.

m The autocorrelation which reflects the firing
rate behave as a negative reflection of the RP
probability.
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