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Single Spike Train

 The last session focused on generating a 
statistical model of spike train generation.

Specifically, the Poissonian neuron.

 This lesson will focus on statistical descriptors of 
spike trains and their relation to the underlying 
model of the spiking.

Overview

 Single ISI measures

 Multiple ISI measures
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TIH/ISI

 ISI = Inter spike interval
 Time difference between adjacent 

spikes

 TIH = Time interval histogram
 The histogram of the time difference 

between adjacent spikes.

Homogeneous Poisson process

P=0.06, , bin size is 1ms
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Experimentally recorded GPi neuron
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ISI: Other neuronal models

 Regular neuron

 Burster

 Non homogeneous Poisson

ISI cumulative distribution function

 The cumulative distribution is:

 For the Poissonian neurons:

1[ ]i iP t t   

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Bin

P

P=0.06, , bin size is 1ms

Survivor (survival) function

Survivor function = 1 - Cumulative sum of TIH
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Hazard function

Hazard function reflect the 
independent probability to fire at any 
single point.

In the Poisson case
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Pitfall:
Very noisy for long ISIs
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CV – refractory period

 Adding an absolute refractory 
period increases the mean by 
tref but the standard deviation 
remains the same
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process: ISI (Coefficient of variation)

MT and V1 macaque
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Overview

 Single ISI measures

 Multiple ISI measures

Multiple ISIs

 In the Poissonian neuron, all the neuronal 
properties may be derived by the 1st order ISI.

 In other cases a measure of the 1st order ISI 
may be very different from a multi-ISI 
measure.

 For example CV vs. FF of a neuron firing 
doublets…

First order ISIs vs. Multi-ISI

 Shuffling  Permutation of the intervals.

 Compute the Fano factor before and after 
shuffling.

 If F=Fshuffle all the irregularity may be explained 
by the ISIs.

 Cv remains the same...
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Consecutive intervals
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An exponential multiplication.

Multiple intervals
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Correlation

 Covariance

 Pearson correlation coefficient
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Autocorrelation function

 General definition

 Wide-sense stationary (WSS) process

 A common definition for spike trains (Dayan & Abbott)
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Autocorrelation practicalities

 Count

 Probability

 Rate

 Value at t=0

 Symmetry
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Autocorrelation practicalities

 Rate normalized version

 Count

 Probability

 Rate

 Not as common…
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Relating to standard correlation

 Covariance

 Pearson
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Autocorrelation practicalities

 Normalization to rate / probability / count

 Normalization to 0 vs. absolute value

 Calculating the autocorrelation:
 All spikes at distance  from each spike.

 Summation of ISI of all orders.

Example - Poisson
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Example - Burster
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Example - Oscillator
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Example – GP neuron during 
Parkinson’s disease
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Long term phenomena

 Firing rate fluctuates over time.

 It is crucial to examine the process on 
multiple timescales.

 Rate fluctuations will reflect as changes 
in the autocorrelation function.

Single spike train measures

 The ISI is typically a good measure on 
the regularity of firing and its fit to the 
Poisson distribution.

 The hazard function is a good measure 
of short term phenomena but cannot be 
used on long timescales.

 The autocorrelation function is a good 
measure for identifying long-term 
phenomena.

Appendix

The results of different measures 
are not as simple as they seem…
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Typical autocorrelation in the pallidum
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Multiple phases: 
1) Refractory phase 
2) Elevated phase
3) Oscillatory phase 
4) Steady state

So is the neuron bursting/oscillating ?

 The spike trains do not reveal any evident 
bursts or an obvious oscillation.

 The hazard function is (almost) flat (!?)
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Simulations – simple case
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p=0.1 and r=6ms

Firing rate without refractory period: 1000/10=100 spikes/s
Firing rate with refractory period: 1000/(10+6)=62.5 spikes/s
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Intuition 

 The key is observing the probability of being in 
a refractory period (RP).

 Assuming RP of length r .. If at any time 
during the last r ms there was a RP than the 
probability for a new RP is reduces since there 
couldn’t have been a spike during the RP.

 The autocorrelation which reflects the firing 
rate behave as a negative reflection of the RP 
probability.

Analysis – simple case
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