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Parseval’s theorem

The Fourier transform is unitary > the sum (or
integral) of the square of a function is equal to the
sum (or integral) of the square of its transform.
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Signal energy

= The energy spectral density describes how the
energy (or variance) of a signal or a time
series is distributed with frequency.
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(only for finite energy signals)

Signal Power

Power = Energy
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Correlation & Convolution

= Correlation

R, ()= Corr(g,h), =Y. gh,.,
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= Convolution
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Wiener-Khinchin theorem

= The power spectrum is the Fourier
transform of the auto-correlation function

= Power spectrum S(f) = fm R(,r)e—j??rf-r dr

= Autocorrelation R(T)Z/m S(f)eji?rfr df

Power spectral density

= Amount of power per unit (density) of frequency
(spectral) as a function of the frequency

Power Spectrum Spectral Density
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Spectrum Estimation - Problems

= |Leakage problems and side lobes.

= Increased length of signal leads to increase in
number of discrete frequency but not to
increased accuracy at each frequency.




Spectrum Estimation Methods

m Non parametric estimators
m Correlogram estimators
m Parametric estimators

m Subspace estimators
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Things we find in the spectrum:

= DC

= White noise

m Harmonics
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Direct Current (DC)

= DC is transformed into energy at frequency 0.

= Unless DC is removed the power it adds is
typically huge compared to all other
frequencies.

10°

13
White noise
= White noise is a random signal (or process)
with a flat power spectral density.
m Zero correlation at t#0.
= There are also pink & red/brown noises.
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Do we have harmonies?

= Many biological processes lead to the
formation of harmonies.

= Any square wave (for example a sudden
change in a parameter) is transformed to
multiple harmonies.

= The multiple frequencies may describe the
same underlying process.
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Temporal & spectral resolution

= Using windowed estimation (Welch/Bartlett)
leads to a temporal / spectral resolution tradeoff.

m For a recording of T seconds sampled at s
samples/sec and assessed using a w sample
window:

Number of windows: Is
w

Spectral resolution (Af): s
w
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Relative & absolute power

= The absolute power depends heavily on the
normalization of the signal.

= The relative power enables detecting the
statistics of the signal at unfiltered frequencies.
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Spectogram

In many cases the signal is not stationary.

However, assuming stationarity over short
intervals leads to usage of the spectrogram.

Power spectral density over short periods of
time using a sliding window over the signal

Temporal resolution vs. spectral resolution...
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Spectrogram
Identification of behavioral states

A Intracranial LFP recordings
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Original signal
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Following notch filter (~1800Hz)
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Following high pass (~300Hz)

Votage (mV)

mmmmmmm

01 02 03 04 05 08 07 08 09 1
Time

23

sl s B e .
e .
" . W
w » oAb
T e
e oo v e
X I ¢ )
/ ‘—_—&——_‘_‘ — "——_\_‘
A A A A A AAAN s
M.-'«,o",',«'n \,-"‘.\‘ﬁ,fq,.h AN W
A e enp il
— —
Time (5) 0A% Time (5) oA %

24



. LH RH
LH
. T
I\
= 1TAN \
3 RH ol o g
& 0 W ¥ » 0 0 2 o
f2 —
£ = | |
; H
. ElflA I
RF AVAL \FAVS
. % 10 2 % % 10 2 »
(1S \ Frequency (Hz)
B D
" LH RH
H ‘ I
.- A )
g CUTRPY 19 A V) OIS Y & | 7. 9 N |
= o 10 0 10 2 M
)
s LF RF
4 FooT 1 TT
E Al *
b |
- g1, I\
RELJUN !
- % 10 m x 0 20
23 Frequency (Hx)

i

25

Cross spectrum |

m Multiplication of the Fourier
transforms of the signals.

$,.(0) =%Y(w)X*(w)
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Cross spectrum Il

m Cross Spectral Density — defined as the
transform of the cross correlation

S, (@)= R, (m)-e ™

m=—o0

= Two unrelated signals sharing common
frequencies will have significant cross spectral
density over finite length of time.
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Coherence

= Coherence - ratio of the cross spectral density
to the power spectral density of the two signals

S, ()
S..()-S,,(f)

C., (=

= Normalizes to the spectrum of the two signals
and thus relates only to the relation between
the signals and not to their structure.
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Coherence example

no tremor hand tremor
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(Dostrovsky et al)
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Coherence
Significance

= Coherence range is 0>1.

= Confidence limit:
1
1-(1-a)®D

a is the probability (e.g. 0.99) and N is the
number of windows (Rosenberg et al., 1989)
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Phase relation
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Spectrum of a spike train
Normal and Parkinsonian primates
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Refractory period spectral effect
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Shuffling

Global and Local
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Spectral compenstation
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Compensated PSD
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Rate dependent oscillations

m Spike trains partially reflect underlying oscillations.
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Matzner & Bar-Gad, PLoS Comp. Bio.2015

39



14

Rate dependent oscillations
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1 Spr(f) = ro + romsinc(2 foT)

= An inhomogeneous spike train over a period (T):
1 T i 2
$5r () = 2 racoyac+ 13 Moyemeerear] |

= Using the simple case of cosine rate modulation
over a base frequency (f;):

+ 1o?Tsinc? (fT)

+ ro*Tmsine(fT) sinc[(f — fo)T] + ro*Tm sinc(fT) sinc[(F + fo)T]
2 2 2 2

+ 0T et l(F o)1) + " sine?[(f + fo)T)

ro*Tm?

+ Tsinr[(f = fo)T) sine[(f + fo)T)
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Spectral peak - function of the rate

The peak power (f = f;) is

2
Sor = f) =1 (1 + )

The baseline power (f # fy) is

Sor(f # fo) =10
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Spectral peak magnitude
Modulating factors
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0
Base rate (sp/s)

An objective measure of the oscillation magnitude.
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