

Outline – Frequency domain

- ✓ Introduction
- ☑ Fourier Transform
- ☑ Sampling Theory
- ☑ Systems
- ☑ Windows

IBG

■ Spectral Analysis

Parseval's theorem

The Fourier transform is unitary \rightarrow the sum (or integral) of the square of a function is equal to the sum (or integral) of the square of its transform.

Continuous Fourier transform

 $\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df$ $\sum_{n=0}^{N-1} |x[n]|^2 = \sum_{k=0}^{N-1} |X[k]|^2$

Discrete Fourier transform

		 ,
		 •
-		

Signal energy

 The energy spectral density describes how the energy (or variance) of a signal or a time series is distributed with frequency.

$$\Phi(\omega) = \left| \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt \right|^2 = \frac{F(\omega) F^*(\omega)}{2\pi}$$

$$\Phi(\omega) = \left| \frac{1}{\sqrt{2\pi}} \sum_{n=-\infty}^{\infty} f_n e^{-i\omega n} \right|^2 = \frac{F(\omega) F^*(\omega)}{2\pi}$$

(only for finite energy signals)

4

Signal Power

$$Power = \frac{Energy}{Time}$$

$$\hat{S}[f] = |DFT\{x[n]\}|^2 = \left| \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{\left(\frac{-j2\pi nf}{N}\right)^2} \right|^2$$

5

Correlation & Convolution

Correlation

$$R_{g,h}(t) = Corr(g,h)_{t} = \sum_{i=-\infty}^{\infty} g_{i}h_{t+i}$$

$$R_{g,h}(t) = Corr(g,h)_{t} = Corr(h,g)_{-t} = R_{h,g}(-t)$$

Convolution

$$(g*h)_t = \sum_{i=-\infty}^{\infty} g_{t-i}h_i$$

	Wie
	■ The transfo
	■ Powe
	■ Auto
IBG	
	Pow
 ASUE N	■ Am (spe
	Pow $S_{x,x}(\omega)$
	$S_{x,x}(\omega)$ $S_{x,x}(f)$:
IBG	$\bar{P}(\omega_1,\omega_2)$
	Spe
	■ Lea
	■ Inc nur inci

ner-Khinchin theorem

power spectrum is the Fourier orm of the auto-correlation function

ver spectrum $S(f) = \int_{-\infty}^{\infty} R(\tau) e^{-j2\pi f \tau} d\tau$

ocorrelation $R(\tau) = \int_{-\infty}^{\infty} S(f)e^{j2\pi f\tau} df$

er spectral density

ount of power per unit (density) of frequency ectral) as a function of the frequency

wer Spectrum Spectral Density

 $P_{x,x}(\omega) = \sum_{m=-\infty}^{\infty} R_{x,x}(m) \cdot e^{-j\omega m} \qquad P_{x,x}(\omega) = \frac{S_{x,x}(\omega)}{2\pi}$ $= \sum_{m=-\infty}^{\infty} R_{x,x}(m) \cdot e^{\frac{-2\pi f m}{f_s}} \qquad P_{x,x}(f) = \frac{S_{x,x}(f)}{f_s}$

age power $P(x) = \int_{\omega_1}^{\omega_2} P_{x,x}(\omega) d\omega - \int_{-\omega_2}^{-\omega_1} P_{x,x}(\omega) d\omega = 2 \cdot \int_{\omega_1}^{\omega_2} P_{x,x}(\omega) d\omega$

ctrum Estimation - Problems

- akage problems and side lobes.
- reased length of signal leads to increase in mber of discrete frequency but not to reased accuracy at each frequency.

	Do we have harmo
	 Many biological process formation of harmonies.
	 Any square wave (for ex change in a parameter) multiple harmonies.
	 The multiple frequencies same underlying proces
IBG	
	Temporal & spectra
	■ Using windowed estimated leads to a temporal / spe
	For a recording of <i>T</i> sec samples/sec and assess window:
	Number of windows: $\frac{T \cdot s}{w}$ Spectral resolution (Δf): $\frac{s}{w}$
 IBG	
	Relative & absolute
	 The absolute power dep normalization of the sign
	■ The relative power enab statistics of the signal at
 A.	

nies?

- ses lead to the
- xample a sudden is transformed to
- s may describe the

16

al resolution

- nation (Welch/Bartlett) ectral resolution tradeoff.
- conds sampled at s sed using a w sample

17

e power

- ends heavily on the nal.
- oles detecting the unfiltered frequencies.

		_
		_
		_
		_
		_
		_

IBG

Cross spectrum II

 Cross Spectral Density – defined as the transform of the cross correlation

$$S_{x,y}(\omega) = \sum_{m=-\infty}^{\infty} R_{x,y}(m) \cdot e^{-j\omega m}$$

 Two unrelated signals sharing common frequencies will have significant cross spectral density over finite length of time.

28

29

Coherence

 Coherence - ratio of the cross spectral density to the power spectral density of the two signals

$$C_{x,y}(f) = \frac{|S_{x,y}(f)|^2}{S_{x,x}(f) \cdot S_{y,y}(f)}$$

■ Nor and the

 Normalizes to the spectrum of the two signals and thus relates only to the relation between the signals and not to their structure.

Power spectrum

 $+r_0^2T\mathrm{sinc}^2(fT)$

■ An inhomogeneous spike train over a period (*T*):

$$S_{\rho_T}(f) = \frac{1}{\tau} \left[\int_0^T \lambda(t) \, dt + \left| \int_0^T \lambda(t) e^{-i2\pi f t} dt \right|^2 \right]$$

 Using the simple case of cosine rate modulation over a base frequency (f_0) :

 $S_{\rho_T}(f) = r_0 + r_0 m \operatorname{sinc}(2 f_0 T)$

 $+ r_0^2 Tm \operatorname{sinc}(fT) \operatorname{sinc}[(f - f_0)T] + r_0^2 Tm \operatorname{sinc}(fT) \operatorname{sinc}[(f + f_0)T]$ $+ \frac{r_0^2 T m^2}{4} \operatorname{sinc}^2[(f - f_0)T] + \frac{r_0^2 T m^2}{4} \operatorname{sinc}^2[(f + f_0)T]$ $+ \frac{r_0^2 T m^2}{2} \operatorname{sinc}[(f - f_0)T] \operatorname{sinc}[(f + f_0)T]$

41

Spectral peak - function of the rate

The peak power $(f = f_0)$ is

$$S_{\rho_T}(f = f_0) = r_0 \cdot (1 + \frac{r_0 T m^2}{4})$$

The baseline power ($f \neq f_0$) is

$$S_{\rho_T}(f \neq f_0) = r_0$$

