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PCA and Dimensionality Reduction
• Principal component analysis (PCA) is a technique that is 

useful for the compression and classification of data.

• The purpose is to reduce the dimensionality of a data set 
(sample) by finding a new set of variables, smaller than 
the original set of variables, that nonetheless retains most 
of the sample's information.

• By information we mean the variation present in the 
sample, given by the correlations between the original 
variables. The new variables, called principal components 
(PCs), are uncorrelated, and are ordered by the fraction of 
the total information each retains.
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Math review: eigen-values and eigen-vectors

• Definition: Let T[MxN] be a linear transformation. 
X[Mx1] is an eigenvectror of T & λ is an eigen-value of T 
if:
T ∙ X = λ ∙X

• How to find eigen-values and vectors:
To extract eigen-values solve: |T – λI| = 0 
To extract eigen-vector Xi solve: T ∙ Xi = λ ∙Xi

(T – λI)∙ Xi = 0
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PCA: algorithm
1. Input: Y[nxm], n- # of trials, m - # of samples in each trial.

2. Subtract the mean from each dimension of X = Y -E(Y) –
meaning for each sample point/variable dimension we 
subtract the mean (calculated over trials)

3. Derive eigen-values & vectors of X’∙X (Covariance matrix. 
Actually a real covariance matrix is obtained by dividing X’X 
by N, but that is not important for this algorithm).

4. Sort diagonal eigen-values (highest → lowest) and adequate 
eigen-vectors Vi[mx1]  - the principal components.

5. To find the projection of trial k X[k, :] on principal component 
Vi[mx1] : 
ρk,i = X[k, :]∙Vi[mx1] 
Reconstructed signal: X[k, :] = ∑i ρk,i ∙ V’i[mx1] 

Example
• Example:  Each observation (e.g. trial) contains 2 variables 

(dimensions) – e.g. value sampled at times t1, t2:
t1 t2 t1 t2 t1 t2

A = trial 1: [ 2      6 ] E(A) =  [ 2        5] B=A-E(A) =   trial 1:   [   0       1 ]

trial 2: [1.5    5 ] trial 2:   [-0.5     0  ] 

trial 3: [2.5    4 ] trial 3:   [ 0.5     -1 ]

C = B’*B =                       t1 t2

t1: [0  -0.5  0.5  ]  [   0       1 ]                 t1 t2

t2: [ 1     0    -1  ]      *  [-0.5     0  ] =      t1 [ 0.5  -0.5 ]

[ 0.5     -1 ]              t2 [-0.5     2  ]

λ1,2:    det(C – λI) = 0

[ 0.5  -0.5 ]   - [ λ 0   ] = 0       [ 0.5- λ -0.5 ]   = 0

[-0.5     2 ]       [ 0     λ ]           , [ -0.5         2- λ ]          ,   det(C) = ad-bc = λ2 – 2.5 λ + 0.75 = 0,     

λ1 = 0.3486

λ2 = 2.1514

Example contd.
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PCA: Assumptions and limitations

• Assumptions:
• Mean and variance (moments 1&2) are sufficient statistics. 

Large variances are important.

• Limitations:
• Linear transformation.

• Properties:
• PCs are orthogonal.

Example : Exam 2007

• The shape of spikes recorded in the Animalis Simplistics
may be described by: A(n) = α(n)V1 +β(n)V2

(A, V1 & V2 are vectors of length τ). 
The values of α are distributed normally (μ=0,σ=1) and  
β(n) = 2α(n). 
After performing PCA on the spikes, the number (k) of 
non-zero eigenvalues is:

a. k = 0

b. k = 1

c. k = 2

d. k > 2

e. k = n

Example  exam 2006
• For which of the following two variable distributions is the first 

principal component (as calculated using PCA) most useful?
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ICA: Independent component analysis

• Definition: ICA separates the data into statistically 
independent components 

• Requirements:
• Sources are independent

• Sources are non-Gaussian (at most one can be Gaussian)

• Algorithms: no closed solution.
• Maximize non-Gaussianity of recovered sources, using

• Kurtosis (=0 for a Gaussian)

• Entropy (maximal for a Gaussian)

• Minimize mutual information between recovered signal components 
– less information==more independence

• Maximum likelihood – includes information on priors for the 
sources. (so not completely blind..)

PCA vs. ICA

• PCA finds direction of maximal variance

• ICA finds direction of maximal independence in non-
Gaussian data (higher-order statistics).

• ICA can be used for blind source separation.


