SIGNAL & DATA ANALYSIS IN NEUROSCIENCE 2020 DISCRIMINATION

Ayala Matzner

biu.sigproc@gmail.com

Discrimination: basic terms

- Problem: upon receiving 'r' decide upon H₀ or H₁.
- Decision rule: if $r \ge Z$ then decide H_1 , otherwise decide H_0 .

		Actual value					
		P	N				
	P	* True P	* False P				
		* Detection	* False detection				
		* 1-β(z)	/False alarm				
Prediction			* Type I error α(z)				
	Ν	* False negative	* True N				
		* Miss detection	* Correct rejection				
		* Type II error β(z)	* 1- α(z)				

- $\alpha(Z) = P(r \ge Z \mid H_0)$ false positive.
- $\beta(Z) = P(r < Z | H_1)$ false negative.
- Sensitivity = 1 $\beta(Z)$. Sensitivity = 1 => recognize all positives.
- Specificity = 1 $\alpha(Z)$. Specificity =1 => recognize all negatives.
- Power of the test 1- β .

Receiver Operating Characteristics (ROC) curve

- · ROC generation:
- for every threshold z extract FP & TP.
- · Classification performance:
- $\int (1-\beta) d\alpha$: $\frac{1}{2}$ = worthless
- 1 = perfect classification

 $^{\circ}$ It may make sense to set α high to minimize Type II errors (false negatives), even at the expense of additional Type I errors (false positives). Example: radar, new drug test.

Example: ROC from exam 2007

Given the following probabilities of evoked potential amplitudes:

Neuron rate (spikes/sec)	0	10	20	30	40
Prey	0	0.2	0.2	0.3	0.3
Predator	0.3	0.3	0.2	0.2	0

The behavior of the animal may be characterized by: $P(TP) = \sqrt{P(FP)} \label{eq:power}$

- Plot the ROC curves of the behavior and neuronal discrimination.
- Is the single neuron sufficient to predict the behavior?
- What is p[success] for the two statistics? (reminder: P(success) = $\int (1-\beta) \ d\alpha$)

Solution cont.

$$\begin{split} & For \ each \ value \ of \ Z \ extract: \\ & X \ axis: \ FP(Z) = P(rate \geq Z \ | H_0). \\ & Y \ axis: \ TP(Z) = 1 \ -P(rate \leq Z \ | H_1) \end{split}$$

Z		-10	0	10	20	30	40	50
FP(Z)	$= P(rate \ge Z \mid H_0)$	1	1	0.7	0.4	0.2	0	0
TP(Z)	= 1 -P(rate \leq Z H ₁)	1	1	1	.8	.6	.3	0
	$= P(rate > Z H_1)$							

Animal ROC: $TP = \sqrt{FP}$

				.2								
	TP = √FP	0	.3	.45	.55	.65	.70	.80	.85	.90	.95	1
Į	VFP											

Solution cont

 Is the single neuron sufficient to predict the behavior?
 Ans: Yes, since the ROC provides performance that is above the behavior ROC, a single neuron is sufficient to predict behavior.

· P(success)

$$\frac{(.3+.6)\cdot .2}{2} + \frac{(.6+.8)\cdot .2}{2} + \frac{(.8+1)\cdot .3}{2} + \frac{(1+1)\cdot .3}{2} = .8$$

· P(success animal)

$$\int_0^1 x^{\frac{1}{2}} \cdot dx = \left. \frac{2}{3} \cdot x^{\frac{3}{2}} \right|_0^1 = \frac{2}{3}$$

Continuous ROC (exam 2010)

- Bilbo Baggins has a neuron which is part of the Orc sensing system. Upon sensing an Orc the neuron's firing rate is described by a uniform distribution in the range [20-40] while upon sensing any other creature the firing rate is taken from a uniform distribution in the range [15-25].
- a) Draw the ROC curve of the Orc identification.
- b) Calculate the classification performance.

