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The neuronal transformation
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Stimulus > Spike train (or rate)

= In the previous lecture we related a
stimulus described as a point process to
the neuronal activity.

= In this lecture we will describe the general
case of a time series representation of
the stimulus (or even more generally: a stochastic process)
and its relation to the neuronal activity.




Outline

m Reverse correlations
m Linear filters
= Static non-linearity

= Example: V1 simple neurons

Based heavily on:
Theoretical neuroscience, Dayan P & Abbott LF, Chapter 2

Spike triggered average

= The interesting question:

What does the spike encode?

= A surrogate question:

What is the average stimulus preceding a spike?

w y spike-triggered average
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Reverse correlation

= Average stimulus preceding the spike > Reverse
correlation of the stimulus and the spike train
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with r = n/T the average spike rate and Qrs =
% & dtr(t)s(t + ) the correlation between the
signals r and s.




Reverse correlation - Electric fish

Electric signal c(t)
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Activity of a sensory neuron

Spike triggered average - notes

= Reverse correlations assumed rate-based
changes (Poissonian neuron).

= Non-Poissonian activity adds complexity to the
spike triggered average.

Multi-spike triggered averages

H1 movement sensitive visual neuron of the blowfly.
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(Rieke et al., 1997)

A: Spike triggered average

B: Two-spike with an interval of 101 ms triggered average
-> linear sum of the spike triggered averages

C: Two-spike with an interval of 5+1 ms triggered average >
non linear sum of the spike triggered averages
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Stimulus 2> Rate

m We will try to describe the rate of the neuron
as a function of the stimulus at all previous
time.

= We will define this function as a filter on the
stimulus. Filters will be discussed in great
detail in the spectral part of course...

= The general description (Volterra series)
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Linear filter model

= The basic model that we will use is of the neuron
as a linear filter on the stimulus

T (=1, +TD(r)s(t -7)dr

ry— baseline firing rate D - response kernel
resi(t) — firing rate function s(t) — stimulus function

= Rate - Convolution of the stimulus & response kernel.

= What is the best rate estimation r(t)? Or in
other words what is the best kernel Dop(t) ?

= To do that we'll first define white noise...




White noise stimulus

& White noise is random (non-restricted values),
uncorrelated stochastic process - s(t):

(s(t) st + 1) =0,2-8(7)
= The stimulus autocorrelation function - Q:
I
0.(0)= % . { s(6)-s(t+)dt
= Thus, the autocorrelation of white noise — Q:
Qs,s(‘f) = 0'52 : 5(0

1 m Assuming an ergodic signal we traded
ensemble average for time average.

Optimal kernel |

m The best rate estimator is defined by the
difference from the actual rate function.

E :%»{(rm(:)—r(z))zdz

m The best estimator minimizes the difference
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Optimal kernel Il

m The best estimation is achieved:

[d70,(-t)D()=0,(-7)
0
For white-noise stimuli Qss() = 028(7), so

o T 8(z-7)D(z")dt' =07 - D(1)=0, (-7)
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D(r) = Qri;T) — (r) C(7)

T,




Optimal kernel calculation

= Create white noise stimulus (no correlations).

= Calculate spike triggered average response to
the stimulating white noise.

= Normalize the spike triggered average by the
rate to get the optimal kernel.

H1 neuron in visual system of
blowfly
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Optimal kernel without using
white noise input

= Solving the equation: _[dr'Qﬂ(r -YD(r') =0, (1)
0

= When the input is not white, a Fourier
transform of the correlation functions
enables finding the optimal kernel
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Deviation from linearity

= Typically neurons deviate from the linear
relationship: r,, (1) = r, + [ D(0)s(t=7)dr = 1, + L(1)
m The most common deviations are
saturation and threshold.

Static non-linearity |
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(3)F(L) =1y, [tanh(0.5(L~L,))]. tanh(x)=

G=25Hz Ly=1 L =3 ripae = 100Hz, g, =2, and g, = 1/2




Static non-linearity Il

stimulus response
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The rate estimate is

rest(t) = rg + F(L(t))
with F the non-linear function and L estimated using the linear theory.

A two-step approach: first estimate the optimal linear filter, then fit
the best non-linearity.

~ | Suboptimal: No inclusion of (non-linear interactions of) higher order
moments
Linear filter is optimized ignoring the non-linearity.

Non-linearity — other options

= The optimization method is non optimal even
for static non linearity. However, Bussgang
theorem demonstrates that it is close to
optimal for Gaussian white noise.
m The other options are:
e Optimize a non-linear function

IMOESA +TD(T)f(S(t )

0
e Use more terms in the Volterra or Wiener
expansion
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Visual stimuli

Sinusoidal grating
s(x,y,t) = Acos(Krcos® + Kysin® — d)cos(wt)
K,w spatial, temporal frequency. @ is orientation.

White-noise stimulus

(s(ay, s,y #)) = o28(t — 5w — )3y — o)

(s) = 0 to avoid dependence
on overall illumination.
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Spatial receptive fields

We generalize previous concepts to 2-d visual stimuli s(x, y, £):

Spike-triggered average C(xz,y,7)= Tll (Z?:z s(x,y,t; — T)>
Correlation function Qrs(a,y,7) = 13 dir(t)s(a, gt + 1)
Clz,y,m) = Q—%—H’” S

Linear filter L(t) = [§¢dr [ dedyD(z,y, 7)s(z, y,t — 7

For white-noise D(z,y,7) = Qi(%P)
Separable kernel D, y,7) = Dalar, y)Di(7)
Ds(w,y) o [drD(z,y,7)

V1 spatial receptive fields

D(x,y) from spike triggered average
of two different cat visual cortex area
17 simple cells.

Stimulus is averaged 50-100 msec prior
to action potential.

D(x,y) shows separate ON and OFF
region.

' Simple cells with up to 5 regions are
found.

Gabor function
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Response to grating

=
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«  Grating stimuli superimposed on spatial receptive fields.

«  Dark oval — OFF area D;<0 , White oval — ON area D;>0

«  Optimal response when both spatial frequency and
orientation of stimulus and filter match (such as in figure A)

Gabor functions

Examples of other shapes of Gabor functions:
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Preferred orientation of light bars is parallel to the y direction.

A: D(2,0) vs. © with o, =19,1/k =0.5%,6 =0
B: D(x,0) vs. = with o, =10,1/k = 0.5%, ¢ = /2
C: D(2,0) vs. @ With 0, =19 1/k =0.33%, ¢ = n/4
D: D(0,y) vs. y with o, =20
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Temporal receptive fields |
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= Space-time evolution of V1 cat
receptive field

= ON/OFF boundary changes to
OFF/ON boundary over time.

= Spatial response locations do not
change with time: separable kernel.
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We estimate D(r) = [dxdyD(xz,y.7). The result is well fitted with the
difference of two Gamma functions:
5 7
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