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The neuronal transformation

Sensors Spike Generators(t) r(t) ( )t

Event related potential
Neural encoding

Sensors Spike Generators(t) r(t) ( )t

Neural discrimination
Neural decoding

Stimulus  Spike train (or rate)

 In the previous lecture we related a 
stimulus described as a point process to 
the neuronal activity.

 In this lecture we will describe the general 
case of a time series representation of 
the stimulus (or even more generally: a stochastic process) 

and its relation to the neuronal activity.
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Outline

 Reverse correlations

 Linear filters

 Static non-linearity

 Example: V1 simple neurons

Based heavily on:
Theoretical neuroscience, Dayan P & Abbott LF, Chapter 2

Spike triggered average

 The interesting question:
What does the spike encode?
 A surrogate question:
What is the average stimulus preceding a spike?

Stimulus and response are defined periodically: r(t+T)=r(t), s(t+T)=s(t).

Reverse correlation

 Average stimulus preceding the spike  Reverse 
correlation of the stimulus and the spike train
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Reverse correlation - Electric fish

Activity of a sensory neuron

C(t)Electric signal 

Spike triggered average - notes

 Reverse correlations assumed rate-based 
changes (Poissonian neuron).

 Non-Poissonian activity adds complexity to the 
spike triggered average.

Multi-spike triggered averages

A: Spike triggered average 
B: Two-spike with an interval of 10±1 ms triggered average 
 linear sum of the spike triggered averages 

C: Two-spike with an interval of 5±1 ms triggered average 
non linear sum of the spike triggered averages

H1 movement sensitive visual neuron of the blowfly.

(Rieke et al., 1997)
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Outline

 Reverse correlations

 Linear filters

 Static non-linearity

 Example: V1 simple neurons

Stimulus  Rate

 We will try to describe the rate of the neuron 
as a function of the stimulus at all previous 
time. 

 We will define this function as a filter on the 
stimulus. Filters will be discussed in great 
detail in the spectral part of course…

 The general description (Volterra series)
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 The basic model that we will use is of the neuron 
as a linear filter on the stimulus

r0 – baseline firing rate D - response kernel
rest(t) – firing rate function s(t) – stimulus function

 Rate  Convolution of the stimulus & response kernel.

 What is the best rate estimation rest(t)? Or in 
other words what is the best kernel Dopt(t) ?

 To do that we’ll first define white noise…

Linear filter model
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White noise stimulus
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Optimal kernel I

 The best rate estimator is defined by the 
difference from the actual rate function. 

 The best estimator minimizes the difference
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 The best estimation is achieved:

Optimal kernel II
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Optimal kernel calculation

 Create white noise stimulus (no correlations).

 Calculate spike triggered average response to 
the stimulating white noise.

 Normalize the spike triggered average by the 
rate to get the optimal kernel.

H1 neuron in visual system of 
blowfly

 Stimulus – image velocity

 Response of H1 neuron 

 Estimated rate rest(t) (solid)

assuming linear kernel
 Neural rate r(t) (dashed)

averaged spike trains

Optimal kernel without using 
white noise input

 Solving the equation:

 When the input is not white, a Fourier 
transform of the correlation functions 
enables finding the optimal kernel
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Outline

 Reverse correlations

 Linear filters

 Static non-linearity

 Example: V1 simple neurons

Deviation from linearity
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 Typically neurons deviate from the linear 

relationship:

 The most common deviations are 
saturation and threshold. 

Static non-linearity I
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Static non-linearity II

Non-linearity – other options

 The optimization method is non optimal even 
for static non linearity. However, Bussgang
theorem demonstrates that it is close to 
optimal for Gaussian white noise.

 The other options are:
 Optimize a non-linear function

 Use more terms in the Volterra or Wiener 
expansion
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 Reverse correlations

 Linear filters

 Static non-linearity

 Example: V1 simple neurons
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Visual stimuli

Spatial receptive fields

V1 spatial receptive fields

(Border parallel to y axis i.e. Θ=0, origin at center
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Response to grating

• Grating stimuli superimposed on spatial receptive fields.
• Dark oval – OFF area Ds<0 , White oval – ON area Ds>0
• Optimal response when both spatial frequency and 

orientation of stimulus and filter match (such as in figure A)

Gabor functions

y!

Temporal receptive fields I

 Space-time evolution of  V1 cat 
receptive field

 ON/OFF boundary changes to 
OFF/ON boundary over time.

 Spatial response locations do not 
change with time: separable kernel.
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Temporal receptive fields II


