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Filter in signal analysis

= Filters are used to eliminate unwanted
frequencies from an input signal or to select a
desired frequency range among many others.

m Filters form a sub-group of the systems.

= There are analog and digital filters. We will
focus on the digital filters.




Filters
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Input - Filter — Output

= Given the input X(w) and desired output
Y(w), how can we describe H(w) ?

= Moreover, how can we transfer it to the
time domain and get a representation of
the three components?

Ideal Filtering

Since Y(w)=X(w)-H(w)

H(w) X(w)

w

Remember : No frequency domain systems exist !!




Ideals problem : F(rect)=sinc

Ideal frequency response > sinc in the time domain !
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The sinc function
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sinc problem

= The sinc function is infinite, forever oscillating
around zero.

= Inserting Irrelevant samples into the filtered signal
= Since both F(rect)=sinc & F(sinc)=rect

this problem is relevant for rectangular windows in
both time and frequency domains




Filter Design - Amplitude )

cutoff frequency transition bandwidth

Truncated sinc filter

Time Domain
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Filter families

= There are many filter families possessing
different characteristics

= In this example a 10 pole Chebyshev &
Butterworth low-pass filters
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Number of poles

= Butterworth filter of order 1 > 5
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Special case: Notch Filter

= Special case of band-stop filter.

= Remove a narrow band from the signal

= Usually used for network noise (50,60 hz)
= BEWARE:

e Drastically distorts phase, esp. when analog

e Even if not, cancels most of the energy in the narrow
band instead of just the noise part of it
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Filter example |
Original extracellular signal

Extracellular recording, containing the summation of
different processes. Some relevant (neural origin)
and some irrelevant (non neural origin).
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Filter example Il
Following notch filter (~1800Hz)

External (non biological noise) may have a very
narrow band. Both local field potential (LFP) and
action potentials (spikes) are apparent.
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Filter example lll
Following high pass (~300Hz)

Removal of the high frequency components
removes the local field potential, leaving the spiking
activity.
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Filter Design - Phase

LTI system: H(w)= A(w)e”

(Phase Delay)

Therefore, in order to achieve constant delay
(that all frequencies will be delayed by the
same phase) we would like to have a linear
phase response.

[or at least at the relevant frequency range]




Semi-Log plot
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Phase distortion
Extracellular recording
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(Yael & Bar-Gad., 2017)

Phase distortion
Linear vs. Non-linear phase
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Filters
Avoiding sampling problems

when X(w) > X[k] looks like this,

You have an aliasing problem...

What is there to do? - i

X(w
And if we can not increase wg ? l
X(w
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Online vs. Offline Filtering

= Online filtering —
e Live streaming (usually analog) data
e Delay limit
e Limited computational resources

n Offline filtering —
e Sampled, stored, digital data
e No time limit
e Less limited computational resources

Analog Filters

RC Circuit = the simplest LPF
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Filters in Neuroscience

= Cell Membrane as LPF
m Slice Bath as LPF

Patch-Clamp
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sinc: time & frequency duality

Time Domain Frequency Domain




Finite sinc
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Ideal Filter Example

.27 . 2z
signal =sin(——¢) +sin(10* ——¢
€ (1000 ) ( 1000 )

Convolution with a rectangular window
result = conv(ones(1,120), signal)

Windows

rectangular window - sharp edges - spreads out in frequency domain
we seek a more gentle window function, tapered towards the edges
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Windows frequency response

frequency time
Triangular window
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Leakage windows |
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Windows and filters

DFT Frequencies

m Discrete -

. —j=—=n 2z
mRange :0-2n, ¢ ¥ S Ak="—
m Periodic N

But...

What about frequencies in between?

DFT Leakage

Say we had a sinusoid of 2.3 Khz and we still
sampled it at 8000 samples/s :

The output frequency bins = 0Kkz, 1Khz, ..., 7Khz
2.3 Khz bin is missing!!

What happens is that this frequency component
shows up (leaks) in all the other frequency bins

) Remedy
Windowing Techniques




