

Outline - Frequency Domain

- ☑ Introduction
- ☑ Fourier Transform
- ☑ Sampling Theory
- Systems
- Filters
- Windows
- Spectral Analysis

Filter in signal analysis

Filters are used to **eliminate** unwanted frequencies from an input signal or to $\textbf{select}\ a$ desired frequency range among many others.

- IBG
- There are analog and digital filters. We will focus on the digital filters.

_

Ideals problem : F(rect)=sinc Ideal frequency response \Rightarrow sinc in the time domain! example: ideal low-pass $h[n] = \frac{1}{2\pi} \int_{-\Omega_1}^{\Omega_2} \exp(j\Omega n) d\Omega = \frac{1}{2\pi} \left[\frac{\exp(j\Omega n)}{jn} \right]_{-\Omega_1}^{\Omega_1}$ $= \frac{1}{2\pi jn} \left[\exp(j\Omega_1 n) - \exp(-j\Omega_1 n) \right]$ $= \frac{1}{n\pi} \sin(n\Omega_1) = \frac{\Omega_1}{\pi} \operatorname{sinc}(n\Omega_1)$
The sinc function The classical "unnormalized" definition $sinc(x) = \frac{sin(x)}{x}$
• Signal analysis "normalized" definition $sinc(x) = \frac{sin(\pi x)}{\pi x}$
sinc problem
 The sinc function is infinite, forever oscillating around zero. Inserting Irrelevant samples into the filtered signal Since both F(rect)=sinc & F(sinc)=rect this problem is relevant for rectangular windows in both time and frequency domains

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

	—
	_

