

Neural Interaction II
■ Single neuron interaction
Population interaction
(A) (B)
■ Global co-activation (arousal, task,)
 Common input
 ■ Symmetric
 Input from the same neuron. Inhibitory Excitatory
 Input from the same group or network of neurons which have common properties.
IBG
 Synaptic coupling
■ Asymmetric
 The 1st neuron de/activates the 2nd neuron Excitatory Inhibitory
■ The 1 st neuron belongs to a group de/activating the 2 nd neuron
IBG

 Outline
■ Neural Interaction
■ Interaction analysis
■ Artifacts
IDG
 СІН
CIH (cross interval histogram) Spikes for neuron A are the renewal points for neuron B Exponential distribution if no interaction (assuming Poissonian neurons)
0.1 0.08 0.06 0.06 0.02 0.02 0.04 0.02 0.04 0.02 0.04 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06
 Cross-correlation practicalities
• Count $Q_{C_{1,2}}(\tau) = \sum_{i=1}^{n_1} \rho_1(t_{1,i}) \cdot \rho_2(t_{1,i} + \tau)$
 Probability $Q_{P_{1,2}}(\tau) = \frac{1}{n} \cdot \sum_{i=1}^{n_1} \rho_1(t_{1,i}) \cdot \rho_2(t_{1,i} + \tau)$
■ Rate $Q_{R_{1,2}}(\tau) = \frac{1}{n \cdot \Delta t} \cdot \sum_{i=1}^{n_1} \rho_1(t_{1,i}) \cdot \rho_2(t_{1,i} + \tau)$

Cross-correlation (rate normalized)
■ Count $Q_{C_{1,2}}(\tau) = \sum_{i=1}^{n_1} \left[\rho_1(t_{1,i}) - r_1 \right] \cdot \left[\rho_2(t_{1,i} + \tau) - r_2 \right]$ ■ Probability $Q_{P_{1,2}}(\tau) = \frac{1}{n} \cdot \sum_{i=1}^{n_1} \left[\rho_1(t_{1,i}) - r_1 \right] \cdot \left[\rho_2(t_{1,i} + \tau) - r_2 \right]$ ■ Rate $Q_{R_{1,2}}(\tau) = \frac{1}{n \cdot \Delta t} \cdot \sum_{i=1}^{n_1} \left[\rho_1(t_{1,i}) - r_1 \right] \cdot \left[\rho_2(t_{1,i} + \tau) - r_2 \right]$
(A) Symmetry
Reference neuron Target neuron Autocorrelation
• $C_{ij}(t) = C_{ii}(-t)$ • Cross-correlation • $C_{ij}(t) \neq C_{ji}(t)$ • $C_{ij}(t) = \alpha C_{ji}(-t)$
3G
Cross-correlation: common input
Firmy rate (spikesis)

IBG

-1000 -500 0 500 1000 -100 -50 0 Offset(ms)

_

Analysis - simple case

(2)
$$c_{n,m}^*(t) = (1 - a_n(t)) \cdot (1 - a_m(t)) \cdot \frac{p_n}{1 - p_n}$$

Analysis - complex case

(1)
$$p_n^* = p_n \cdot (1 - p_m \cdot \sum_{n=-\alpha}^{\alpha} S_{m,n}(u))$$

Size of peak in different brain areas

	Observed Firing rate (spikes/s)	Original Firing rate (spikes/s)	Δλ (Hz)	$\Delta\lambda/\lambda_{\infty}$ (%)
Pallidum	60	78.5	42.6	71.1
STN	25	27.2	4.6	18.6
Cortex	5	5.1	0.2	3.1

S_{n,m}=S_{m,n}=[0.25 0.75 1 0.75 0.25]

Summary

- Cross correlations are the most common tool for testing neural connectivity and functional relations between and within brain areas.
- Cross correlations provide a very limited ability to research the neural connectivity.
- Stronger methods exist which look at the spike sequences using measures such as mutual information.