
•
 •
-
-
 •
-
-
•
•
•
-
 -
-
_
=
•
 -
-
•
 -
-

Course basics

- Lectures (Tuesday 8-10, 901/101):
 - Lecturer: Izhar Bar-Gad
 - Gonda Brain Building (901), Room 408
 - Phone: 03-5317141, Email for appointment
 - Email: izhar.bar-gad@biu.ac.il
- Exercises (Tuesday 12-14, 604/201)
 (Tuesday 16-18, 604/202, Thursday 14-16, 604/202)
 - Teaching Assistant (TA): Michal Israelashvili
 - Gonda Brain Building (901), Room 418
 Phone: 03-5317131, Email for appointment
 - Email: matlab.brain@gmail.com

Course Web Site

http://www.ibglab.org/matlab-2017-lectures

 Contains: Contact info, presentations, exercises, syllabus, messages and additional links

Also accessible through http://www.ibglab.org/

- The presentations will (hopefully) be available on the web site at least one day before the lectures.
- Password: matlab2017

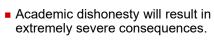
IBG

 _
 _
 _
_
_
 _
_
_
 _
 _
_
 _
 _
 _
_
 _
 _
_

Course target & non-target

- Target: Provide the basic programming skills in MATLAB needed to construct applied scientific programs.
- Non-target: Replace specific computer science courses (computer structure, programming, algorithms, etc.)

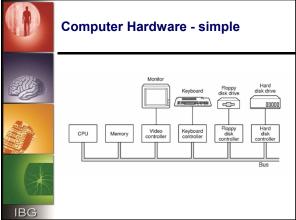
- Weekly exercises (10 * 2% = 20%)
 - 10 out of 12 weekly exercises.
 - All home works must be submitted within one week (Monday or Wednesday - midnight).
- Paper based quizzes (2 * 20% = 40%)
 - Two written quizzes (One hour Weeks XXX & XXX)
- Computer based quizzes (2 * 20% = 40%)
 - One in-computo quiz (Two hours Weeks XXX & XXX)

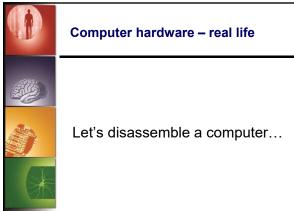

IBG

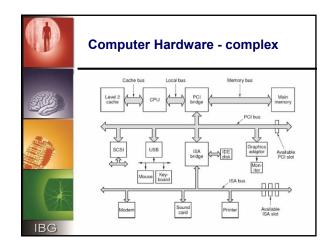
Rules

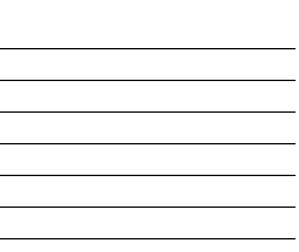
- The small rule
 - Not coming to class is fine.
 - Being late for class is unacceptable.

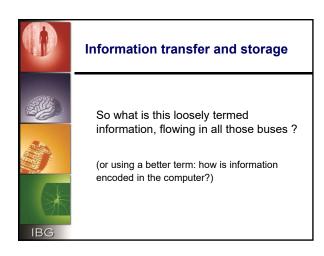
- The (very) big rule
 - A low grade in an exercise is fine.
 - Cheating/copying is unacceptable.

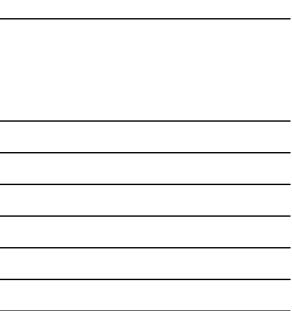

	Lecture 1 - Outline
IBG	 Computers Hardware Binary representation Programming Software Types of programs Programming languages
	Introduction to computers
	 A computer is a device or machine for processing information from data according to a program. (Wikipedia)
 IBG	
	The Processing Cycle I
	 Input comes in from somewhere Keyboard, mouse, memory, camera,
	 The system does something/s with it Add, subtract, move from place to place,
	Output goes out to somewhereMonitor, speaker, memory, robot,
 IBG	

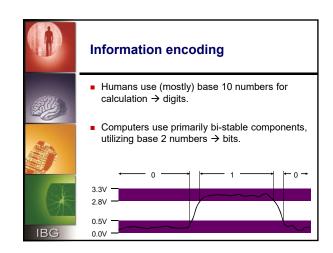

	A
	(4 f N
	750
	\$\hat{7}
-	0
	15
	IE
	(4)
	VI.9 1
	J. 1
	190
	-
	·
	IE
	A
	A
	A
	IE
	A
	A
	A


The Processing Cycle II


- Computer = input + processor + memory + output
- >99.9% of today's computers are embedded (or hidden) in cars, TVs, microwaves, toys ...
- Of the remaining <0.1%, the PC is only one type and we will focus on it. However, there are others: smart phones, tablets, servers, batch processors, supercomputers, ...







 Information encoding - bases
 Decimal numbers - Base 10 10 digits - 0, 1,, 9 Of those we create numbers: 0,1,2,,9,10,11,12,, 137, 138, Positional notation based on powers of 10. 1458 = 8*10⁰ + 5*10¹ + 4*10² + 1*10³ Binary Numbers - Base 2 2 bits: 0, 1 Of those we create numbers: 0,1,10,, 1001,1010, 1011, 1100, Positional notation on the basis of powers of 2. 1101₂ = 1*2⁰ + 0*2¹ + 1*2² + 1*2³
 Binary and Decimal
0 0 1 1 1 2 10 3 11 4 100
5 101 6 110 7 111 8 1000 9 1001 10 1010
 10 1010 11 1011 12 1100
 Converting bases
■ Binary to Decimal
 1101 ₂ = 1*2 ⁰ + 0*2 ¹ + 1*2 ² + 1*2 ³ = 13 ₁₀
$100110_2 = 0^*2^0 + 1^*2^1 + 1^*2^2 + 0^*2^3 + 0^*2^4 + 1^*2^5 = 38_{10}$
 IBG

	Decimal to Binary
IBG	 Divide each time by 2 and check for residual. Add 1 or 0 according to the residual from right to left. Example: 35₁₀ 35/2 → 17 + residual 1 → write 1. 17/2 → 8 + residual 1 → add 1: 11. 8/2 → 4 + residual 0 → add 0: 011. 4/2 → 2 + residual 0 → add 0: 0011. 2/2 → 1 + residual 0 → add 0: 00011. 1/2 → 0 + residual 1 → add 1: 100011. 0/2 → 0 + residual 0 → end Result: 100011₂.
	Binary Algebra
	■ Algebra is the same
	■ Examples: 1110 +1011 11001
IBG	- <u>101</u> 101
	Bytes
	Byte = 8 bits **E ⁺ Octor* 0 0 0 00
	Beliately occording to 255 ₁₀ Decimal: 0 ₁₀ to 255 ₁₀ Hexadecimal: 00 ₁₆ to FF ₁₆ Write FA1D37B ₁₆ as 0xFA1D37B B 11 10 C 12 110
IBG	D 13 11 E 14 11 F 15 11

 -
-
 •
 _
-
 -
•
-
-
-
 -
 _
-
 -
_
 -
 -
-
-
 -
•

Lecture 1 - Outline

- Computers
 - Hardware
 - Binary representation
- Programming
 - Software
 - Types of programs
 - Programming languages

Introduction to Programming I

- **Program** Sequence of instructions that a computer can interpret and execute → written in a specific code.
 - Example: A problematic program to enter the Gonda Brain Research building:
 - Enter through the university gate.

 - Turn right.Walk 30 meters.
 - Turn left.
 - Go up 5 stairs.
- Enter the door.
- Accuracy is essential and so is completeness, otherwise errors will occur → Bugs

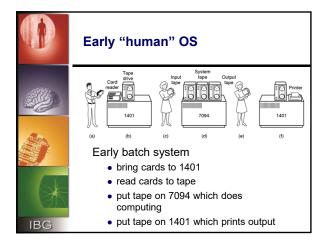
Introduction to Programming II

- Program Work Flow
 - Beginning at a specific point.
 - Execution of commands.
 - End at a specific point.
- A program can be very small (a few lines of code), or very large (Windows 8 contains ~50,000,000 lines of code), and can consist of many files.
- **Programming** creating or changing a program.

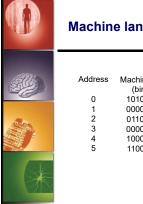
Hardware / Software

Hardware

• Physical substrate which stores and executes the software.


Software

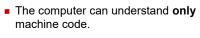
- All the information processed by computer system: programs and data (Alan Turing).
- A computer program encoded in such a fashion that the program contents can be changed with minimal effort (John Tukey).



Operating System (OS)

- An operating system (OS) is the system software responsible for the direct control and management of hardware and basic system operations. Additionally, it provides a foundation upon which to run application software.
- It is an extended machine (top-down)
 - Hides the messy details which must be performed
 - Presents user with a virtual machine, easier to use
- It is a resource manager (bottom-up)
 - Each program gets time with the resource
 - Each program gets space on the resource

-



Machine language

Address	Machine code	Machine code	Assembly
	(binary)	(hex)	
0	10101001	A9	LDA
1	00000010	02	#02
2	01101001	69	ADC
3	00000010	02	#02
4	10000101	85	STA
5	11001011	CB	\$CB

Computer languages I

 Thus, any instructions must be either converted to machine code (compiler) or run by another program running in machine code (interpreter)

Computer languages II

- Many languages exist serving different purposes.
- C built originally for system's programmers
- C++ object oriented programming
- Java portable code across platforms
- And last but not least MATLAB

-	

MATLAB history

- MATLAB ("Matrix Laboratory") refers to both a numerical computing environment and to its core programming language.
- Intended to give easy access to mathematical computation using an interpreter.
- Developed originally based on Fortran and later on C and thus the syntax is mixed.
- Extended over the years to perform a wide variety of functions.

MATLAB advantages

- Simple manipulation of data.
- Enable fast prototyping.
- Large code base of functions.
- Includes packaged support for many scientific and engineering fields.

The real advantage ©

"If you want to work at Google, make sure you can use MATLAB…"

(Jonathan Rosenberg, SVP Product Management, Google)

• "If you want to do neuroscience research, make sure you can use MATLAB ..."

(Izhar Bar-Gad)

IBG