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Parseval’s theorem

The Fourier transform is unitary - the sum (or
integral) of the square of a function is equal to the
sum (or integral) of the square of its transform.
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Signal energy

= The energy spectral density describes how the
energy (or variance) of a signal or a time
series is distributed with frequency.
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Correlation & Convolution

= Correlation

R, ,(t)=Corr(g,h), =D gh,.,

R, (1) =Corr(g,h), = Corr(h,g) , =R, ,(=1)

= Convolution

(g*h), = z gl




Wiener-Khinchin theorem

= The power spectrum is the Fourier
transform of the auto-correlation function
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= Power spectrum S(f) =f R(r)e™ ™7 dy

= Autocorrelation R(’r):jms(f)eﬁnlrdf

Power spectral density

= Amount of power per unit (density) of frequency
(spectral) as a function of the frequency
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Spectrum Estimation - Problems

= Leakage problems and side lobes.

= Increased length of signal leads to increase in
number of discrete frequency but not to
increased accuracy at each frequency.




Spectrum Estimation Methods

m Non parametric estimators

m Correlogram estimators

= Parametric estimators

m Subspace estimators

Example — Welch estimator

Things we find in the spectrum:

= DC

= White noise

= Harmonics




Direct Current (DC)

= DC is transformed into energy at frequency 0.

= Unless DC is removed the power it adds is
typically huge compared to all other
frequencies.
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White noise

= White noise is a random signal (or process)
with a flat power spectral density.

= Zero correlation at t#0.
= There are also pink & red/brown noises.
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Do we have harmonies?

= Many biological processes lead to the
formation of harmonies.

= Any square wave (for example a sudden
change in a parameter) is transformed to
multiple harmonies.

The multiple frequencies may describe the
same underlying process.

Temporal & spectral resolution

= Using windowed estimation (Welch/Bartlett)
leads to a temporal / spectral resolution tradeoff.

= For arecording of T seconds sampled at s
samples/sec and assessed using a w sample
window:

Number of windows: &
w

Spectral resolution (Af): s
w

Relative & absolute power

= The absolute power depends heavily on the
normalization of the signal.

= The relative power enables detecting the
statistics of the signal at unfiltered frequencies.




Spectogram

In many cases the signal is not stationary.

However, assuming stationarity over short
intervals leads to usage of the spectrogram.

Power spectral density over short periods of
time using a sliding window over the signal

= Temporal resolution vs. spectral resolution...

Spectrogram
Identification of behavioral states

A Intracranial LFP recordings
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Original signal




Following notch filter (~1800Hz)
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Cross spectrum |

= Multiplication of the Fourier
transforms of the signals.

5,.(@) = Y@X (@
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Cross spectrum Il

m Cross Spectral Density — defined as the
transform of the cross correlation

S, (@)= R (me™

m=—on

= Two unrelated signals sharing common
frequencies will have significant cross spectral
density over finite length of time.
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= Coherence - ratio of the cross spectral density
to the power spectral density of the two signals

SN[
S-S, ()
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= Normalizes to the spectrum of the two signals
and thus relates only to the relation between
the signals and not to their structure.
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Coherence example
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(Dostrovsky et al)

Coherence
Significance

= Coherence range is 0>1.

= Confidence limit:
1
1-(1-a)®D

a is the probability (e.g. 0.99) and N is the
number of windows (Rosenberg et al., 1989)




12

Probsbitey
-
5| g
B —
3 £

Spectrum of a spike train
Normal and Parkinsonian primates
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Shuffling
Global and Local
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Rate dependent oscillations

= Spike trains partially reflect underlying oscillations.
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(Matzner & Bar-Gad, PLoS Comp. Bio2015)
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Rate dependent oscillations
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Power spectrum

= An inhomogeneous spike train over a period (T):
T . 2
Sor ()= @ a+ ] 2@ ar] ]

= Using the simple case of cosine rate modulation
over a base frequency (f;):

Sor(f) = 1o + romsinc(2 foT)
+ 19*Tsinc? (fT)
+ ro*Tmsinc (fT) sinc[(f — fo)T] + ro®Tm sinc(fT) sinc[(f + fo)T’
ro?Tm? riTmd
4

h— sinc2[(f - fo)T] +

n 2 2
ro?Tm
+ =

sinc?[(f + fo)T]

sine[(f = fo)T] sinc[(f + fo)T]

Spectral peak - function of the rate

The peak power (f = f;) is

roTm?

Sor(f=fo)=m-(1+ 7 )

The baseline power (f # f,) is

Sor(f # fo) =79
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Spectral peak magnitude
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The modulation index estimator
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An objective measure of the oscillation magnitude.




