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Parseval’s theorem

The Fourier transform is unitary  the sum (or 
integral) of the square of a function is equal to the 
sum (or integral) of the square of its transform.

Continuous

Fourier transform

Discrete

Fourier transform 
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Signal energy

 The energy spectral density describes how the 
energy (or variance) of a signal or a time 
series is distributed with frequency.

(only for finite energy signals)

Signal Power
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Parseval’s Theorem

Correlation & Convolution

 Correlation

 Convolution
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 The power spectrum is the Fourier 
transform of the auto-correlation function

 Power spectrum

 Autocorrelation

Wiener-Khinchin theorem

Power spectral density

 Amount of power per unit (density) of frequency 
(spectral) as a function of the frequency

Power Spectrum Spectral Density

Average power
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Spectrum Estimation - Problems

 Leakage problems and side lobes.

 Increased length of signal leads to increase in 
number of discrete frequency but not to 
increased accuracy at each frequency.
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Spectrum Estimation Methods

 Non parametric estimators

 Correlogram estimators 

 Parametric estimators

 Subspace estimators

Example – Welch estimator

Things we find in the spectrum:

 DC

 White noise

 Harmonics
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Direct Current (DC)

 DC is transformed into energy at frequency 0.

 Unless DC is removed the power it adds is 
typically huge compared to all other 
frequencies.
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White noise

 White noise is a random signal (or process) 
with a flat power spectral density.

 Zero correlation at t≠0.

 There are also pink & red/brown noises.

Harmonics
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Do we have harmonies?

 Many biological processes lead to the 
formation of harmonies.

 Any square wave (for example a sudden 
change in a parameter) is transformed to 
multiple harmonies.

 The multiple frequencies may describe the 
same underlying process.

Temporal & spectral resolution

 Using windowed estimation (Welch/Bartlett) 
leads to a temporal / spectral resolution tradeoff.

 For a recording of T seconds sampled at s
samples/sec and assessed using a w sample 
window:

Number of windows:  

Spectral resolution (Δf): s

w

w

sT 

Relative & absolute power

 The absolute power depends heavily on the 
normalization of the signal.

 The relative power enables detecting the 
statistics of the signal at unfiltered frequencies.
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Spectogram

 In many cases the signal is not stationary.

 However, assuming stationarity over short 
intervals leads to usage of the spectrogram.

 Power spectral density over short periods of 
time using a sliding window over the signal

 Temporal resolution vs. spectral resolution…

Spectrogram
Identification of behavioral states

(Gervasoni et al., 2004)

Original signal
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Following notch filter (~1800Hz)
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Following high pass (~300Hz)
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GP activity - Parkinsonian primate

Cross spectrum I

 Multiplication of the Fourier 
transforms of the signals. 
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Cross spectrum II

 Cross Spectral Density – defined as the 
transform of the cross correlation

 Two unrelated signals sharing common 
frequencies will have significant cross spectral 
density over finite length of time.
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Coherence

 Coherence - ratio of the cross spectral density 
to the power spectral density of the two signals

 Normalizes to the spectrum of the two signals 
and thus relates only to the relation between 
the signals and not to their structure.
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Coherence example

(Dostrovsky et al)

Coherence
Significance

 Coherence range is 01. 

 Confidence limit:

1 − (1 − 𝛼)
ଵ

(ேିଵ)

α is the probability (e.g. 0.99) and N is the 
number of windows (Rosenberg et al., 1989)
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Phase relation

Spectrum of a spike train
Normal and Parkinsonian primates

Refractory period spectral effect 
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Shuffling
Global and Local

Spectral compenstation

Rate dependent oscillations

 Spike trains partially reflect underlying oscillations.

(Matzner & Bar-Gad, PLoS Comp. Bio.2015)

𝐴 = 𝑟଴ ∙ 𝑚
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Rate dependent oscillations

 An inhomogeneous spike train over a period (𝑇):

𝑆ఘ೅
𝑓 =  

ଵ

்
∫ λ 𝑡்

଴
𝑑𝑡 + ∫ λ 𝑡 𝑒ି௜ଶగ 𝑑𝑡

்

଴

ଶ

 Using the simple case of cosine rate modulation 
over a base frequency (𝑓଴):

Power spectrum

Spectral peak - function of the rate

The peak power (𝑓 = 𝑓଴) is

𝑆ఘ೅
𝑓 = 𝑓଴ = 𝑟଴ ∙ (1 +  

𝑟଴𝑇𝑚ଶ

4
)  

The baseline power (𝒇 ≠ 𝒇𝟎) is

𝑆ఘ೅
𝑓 ≠ 𝑓଴ = 𝑟଴
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Spectral peak magnitude
Modulating factors

𝑚ෝ =
2 ∙ 𝑆መఘ೅

𝑓 = 𝑓଴ − 𝑟̂଴ 

𝑟̂଴ 𝑇

An objective measure of the oscillation magnitude.

The modulation index estimator


