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Outline

 Entropy

 Mutual information

 Information transmission 

 Continuous variables 

 Neurons & Entropy

 Elements of Information Theory, T. Cover & J. Thomas, Ch. 2. 
 Information Theory, Inference, and Learning Algorithms, David J.C. MacKay, Ch. 2 

(Online version is available on the course web site).

Introduction

 Information theory is a branch 
of mathematics founded by 
Claude Shannon in the 1940s. 

 Information theory sets up 
quantitative measures of 
information and of the capacity 
of various systems to transmit, 
store, and otherwise process 
information.

 Usage: communication, 
compression, cryptography, 
computer science, biology, 
psychology, neuroscience, etc.
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Entropy

 The entropy of a system is the amount of 
uncertainty about the state of that system.  

 The entropy is measured by the number of bits 
required to fully describe the state of the system.

 Other symbols may easily be transformed to bits 
e.g. English letters may be represented by 5 bits.

 Could also be thought of as the number of yes/no 
questions required to establish full understanding. 

This type of entropy is also termed Shanon’s entropy or Information entropy to 
distinguish it from the entropy used in Thermodynamics 

Simple example: coin flipping I

 A coin flip results in either heads or tails. We 
can mark the outcomes using 1 bit:

Head = 0 Tail = 1 

 Following this encoding scheme, the following 
sequences of coin flips are equivalent:

H,H,T,H,T  00101

 Exactly 1 bit is required to represent each toss.

Simple example: coin flipping II

 Assuming that we flip two coins simultaneously, 
we can encode the outcomes as:

 Following this encoding scheme the following 
sequences of coin flips are equivalent:

00101110 

 Exactly 2 bits are required to represent each toss.

Coin A H H T T

Coin B H T H T

Encoding 00 01 10 11

Trial 1 2 3 4

Coin A H T T T

Coin B H H T H
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Simple example: coin flipping III

 What happens if we don’t care about the order?  
We only care if we got both heads, both tails, or a 
mixed pair.  

 The probability of each of these outcomes:
both heads - 25%
both tails - 25%
mixed - 50%

 We will use the following encoding scheme:
mixed - 0
both heads - 10
both tails - 11

 Following this encoding scheme the following 
sequences of coin flips may be encoded as:

100110 

 The average number of bits we use:

Both heads: 0.25 x 2 bits = 0.5 bits
Both tails: 0.25 x 2 bits = 0.5 bits
Mixes: 0.5   x 1 bit = 0.5 bits

1.5 bits

Simple example: coin flipping IV

Trial 1 2 3 4

Coin A H T T T

Coin B H H T H

Entropy & Information

 The entropy of a system is the uncertainty
about its state, i.e. the expected number of bits 
required to fully describe the state of the system.

 In the final two-coin-flip example, we had a 1.5 bit 
uncertainty about the outcome.

 Information is the amount our uncertainty is 
reduced given new knowledge.

 In the two-coin-flip example, if we got new knowledge that 
the two coins flipped were the same, we will gain 0.5 bits of 
information (as there is only 1 bit of uncertainty left).
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Entropy

 Entropy is the expected length in bits of a binary 
message conveying information

 Other common terms: code complexity, 
uncertainty, missing/required information, 
expected surprise, information content, etc.

 Historically, entropy was defined in classic 
thermodynamics as the “amount of un-usable 
heat in system” and in statistical thermo-
dynamics as the “measure of the disorder in the 
system”, the two were proven to be equivalent.

Shannon Information

 Smallest unit of information is the “bit”

 1 bit = the amount of information needed to 
choose between two equally-likely outcomes 
(e.g. flip a coin)

 Properties:
 Information for independent events adds

 Information is zero if we already know the outcome

Shannon Information: Surprise I

1 2 1 2( , ) ( ) ( )p r r p r p rIndependent events:

1 2 1 2( ( , )) ( ( )) ( ( ))h p r r h p r h p r 

The surprise of a single event is high for unexpected 
(low probability) events and low for expected events.

Implies:

2( ( )) log ( ( ))h p r p r 

1 1

2 2

( ) 1 ( ( )) 0

( ) 0 ( ( ))

p r h p r

p r h p r

  
  
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Shannon Information: Surprise II
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Logarithms – useful formulas

log log log

log log log

log log

log
log
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log log

a a a

a a a
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b
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a a

X Y X Y

X
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X Y X

X
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d X e

dX X

  

 







Entropy - definition

 Entropy is the mean value of the surprise over all 
possible observations

 In the discrete case:

2( ) ( ) log ( )
x

H X p x p x 

2( ) [ log ( )]pH X E p x 
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Example: a two outcome event I

 The entropy of the result of a fair coin toss:

 The entropy of an unfair (99% head) coin toss: 

2 2[0.5 log (0.5) (1 0.5) log (1 0.5)]

[ 0.5 0.5] 1

H       

    

2 2[0.99 log (0.99) (1 0.99) log (1 0.99)]

[ 0.0144 0.0644] 0.08

H       

    

Example: a two outcome event II

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4
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1

p(r)

H
p

2 2[ log ( ) (1 ) log (1 )]H p p p p      

 In the general case:

Entropy properties

 Entropy is always positive

 Entropy is maximum if p(r) is constant

 Entropy is minimum if p(r) is a delta function

 The higher the entropy, the more you learn (on 
average) by observing values of the random 
variable

 The higher the entropy, the less you can 
predict the values of the random variable
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Calculating Entropy: 
The simple case

 If all n possible outcomes of situation X are 
equally probable, then our uncertainty about which 
one will occur can be calculated by: 

H(X) = log2(n) bits

 Out of gold eight coins, one of which is a fake, 
while you know the other seven are real.  You 
know the fake one has a different weight than the 
rest.  How many weightings on a balance scale 
will it take to determine the fake?  What if you only 
had seven coins with one fake? What if you had 
nine coins with one fake?

Encoding based on entropy I

 Suppose we have 4 symbols: A C G T with 

 The symbol probabilities are:

Pa = 0.5 Pc = 0.25 Pg = Pt = 0.125

 Leading to surprises: 

ha = 1bit hc=  2bit hg = ht = 3 bit

 Thus the mean uncertainty of a symbol is:

H = 1*0.5+2*0.25+0.125*3+0.125*3 = 1.75 bit

Encoding based on entropy II

 One option for encoding uses 2 bits for each 
symbol: A = 00 C = 01 G = 10 T = 11

 In the other option the number of binary digits 
equals the surprise: A = 1 C=01 G=000 T=001

 So the string ACATGAAC which has 
frequencies the same as the probabilities 
defined above, is coded as:

Method 1 0001001110000001 16 (2 bits per 
symbol)

Method 2 10110010001101 14 (1.75 bits 
per symbol)
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Encoding based on entropy III

 In this specific case, can we find a better 
(shorter) encoding ?

 In the general case, how can we formulate the 
optimal encoding ?

 These questions are handled under the data 
compression topic…

Elements of Information Theory, T. Cover & J. Thomas, Chapter 5. 

Outline

 Entropy

 Mutual information

 Information transmission 

 Continuous variables 

 Neurons & Entropy

Joint entropy

2( , ) ( , ) log ( , )
y Y x X

H X Y p x y p x y
 

 

( , ) 2( , ) [ log ( , )]p x yH X Y E p x y 

 The joint entropy may be considered a 
single vector valued random variable:

 In the discrete case:
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Conditional entropy

Same formulation, but using the conditional density:

The conditional entropy chain rule

Proof:

Thus:

( , ) ( ) ( | ) ( ) ( | )H X Y H X H Y X H Y H X Y   
( | ) ( | ) ( ) ( )H Y X H X Y H Y H X  

Mutual information I

 The entropy tells us how much we can 
learn (therefore how much we don’t know)

 The mutual information between r and s is:
 How much  do we learn about r by observing s?
 How much more do we know about r after 

observing s?
 How much easier is it to predict r after 

observing s?

 Therefore: How much has the entropy of r
decreased after observing s?
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Mutual information II

 Mutual information = How is the entropy of r
decreased by knowing s?

 

( ) ( | )

( ) log( ( )) ( , ) log( ( | ))

( , ) log( ( )) ( , ) log( ( | ))

( , ) log( ( )) log( (

( ; )

( , )
( , ) l

| ))

( | )
( , ) lo og( )

(
g

)
( )

( ) ( )

r r s

r s r s

r s

r sr s

H R H R S

p r p r p r s p r s

p r s p r p r s p r s

p r s p r p r s

p r s
p r s

p r

I R S

p r s
p r s

p r p s

 

    

    

   

 


 

 

 



 

𝐻 𝑅 𝑆 = − ෍ ෍ 𝑝(𝑟, 𝑠) ȉ log (𝑝 𝑟, 𝑠 )

௦௥

The doctor example I

 We’re back to the doctor who need to 
distinguish between:
 The flu p(x1)=0.9 
 Severe infection p(x2) =0.1

 He has two tests: 

 Which test gives more information about 
the state of the patient?

Blood test Y Flu Infection

Positive 0.2 0.7

Negative 0.8 0.3

Urine test Z Flu Infection

Positive 0.1 0.5

Negative 0.9 0.5

The doctor example II

P(y+)=0.9*0.2+0.1*0.7=0.25 P(y-) = 0.75
P(z+)=0.9*0.1+0.1*0.5=0.14 P(z-) = 0.86

H(X)=-(0.9*log2(0.9)+0.1*log2(0.1)) = 0.436

I(Y;X)=0.9*0.2*log2(0.2/0.25)+0.9*0.8*log2(0.8/0.75)+
0.1*0.7*log2(0.7/0.25)+0.1*0.3*log2(0.3/0.75) = 0.0734

I(Z;X)=0.9*0.1*log2(0.1/0.14)+0.9*0.9*log2(0.9/0.86)+
0.1*0.5*log2(0.5/0.14)+0.1*0.5*log2(0.5/0.86) = 0.0621

Thus, the blood test is more informative…
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Properties of mutual information I

 Zero if r and s are independent

 Cannot be more than the entropy

 Cannot be increased by math alone

( , ) ( ) ( ) ( , ) 0p r s p r p s I R S  

( ( ), ) ( , )I f R S I R S

( , ) ( ) ( , ) ( )I R S H R I R S H S 

Holds true for any function, so no transmission line, 
neural network, or computation can ever squeeze 
out more information!

Properties of mutual information II

 I(X;Y)=H(X)-H(X|Y)

 I(X;Y)=H(Y)-H(Y|X)

 I(X;Y)=H(X)+H(Y)-H(Y,X)

 I(X;Y)= I(Y;X)

 I(X;X)=H(X)

Entropy and Mutual information

I(X;Y) H(Y|X)H(X|Y)

H(Y)
H(X)

H(Y,X)
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Relative entropy ≡
Kullback Liebler (KL) divergence

• The excess message length needed to use p(x) -
optimized code for messages based on q(x) 

Relative entropy properties


r

KL rq

rp
rpqpD

)(

)(
log)(),( 2


sr

KL sprp

srp
srpsprpsrpD

,
2 )()(

),(
log),())()(),,((


sr

KL srp

sprp
sprpsrpsprpD

,
2 ),(

)()(
log)()()),(),()((

)),(),()((

))()(),,((

))()(),,((

srpsprpDI

rpsprspDI

sprpsrpDI

KLm

KLm

KLm





Additional (in) equalities

 DKL(p,q)≥0 (information inequality)

DKL (p,q)=0 iff p(x)=q(x) for every x

 I(X;Y)≥0 (Non negativity of mutual information)

I(X;Y)=0 iff Y & X are independent

 H(X|Y)≤H(X) (Conditioning reduces entropy)

 (Independence bound)

If f is convex  E(f(X))≥f(E(X)) (Jensen inequality)

n

1 2 n i
i=1

H(X ,X ,...,X ) H(X )
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Outline

 Entropy

 Mutual information

 Information transmission 

 Continuous variables 

 Neurons & Entropy

Elements of Information Theory, T. Cover & J. Thomas, Chapter 8. 

Compression vs. Transmission

 During compression all the redundancy is 
removed from the data.

 During transmission redundancy is added to 
the data to enable error correction.

Information transmission

 Discrete channel – transitioning between alphabet X to 
Y through a probability matrix p(y|x).

 Memoryless channel – the probability distribution of Y 
depends only on the input at the same time.

 The challenge is encoding the message in such a way 
that it occupies minimal space while still containing 
enough redundancy to be able to detect and correct 
errors.

Encoder DecoderChannel
W ŴXn Yn
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Channel examples

1. A word W in English may be transformed into 
a series of syllables via speech which are 
passed through the air channel and upon 
hearing converted back to a series of 
syllables and to the reconstructed word.

2. A word W in English may be transformed into 
a series of letters represented by 8 bit ASCII 
code and passed through a communication 
line and upon receiving at a different 
computer transformed back to a series of 
letters and to the reconstructed word.

Properties of Channels

 Each channel has a transmission rate – the 
number of symbols it can transmit per time unit.

 Channels have error rates, which determine, for 
any particular symbol, the probability that a 
different symbol will come out of the channel.

 The error rate of the channel determines its 
capacity - the bits of information that are 
transmitted per symbol sent.

 The transmission rate and the channel capacity 
can be multiplied to get its data rate - the rate at 
which information can be sent across the channel.  

Channel capacity

For a discrete memoryless channel: the 
capacity is limiting information transport rate 
that can be achieved with vanishingly small 
error probability.

( )max ( ; )p xC I X Y
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Noiseless binary channel

 Assuming a binary alphabet for both X & Y 
and a noiseless channel:

 The channel capacity is maximal when:

0 0
11

X Y

( ; ) ( ) ( | ) ( ) 0 ( )I X Y H X H X Y H X H X    

( 1) ( 0) 0.5 1p x p x C     

Noisy binary symmetric channel














pp

pp

1

1
P

}1,0{    }1,0{  YX

0 0

11

X Y
p1

p1

p p

Binary symmetric channel –
Mutual information II

 Equality is achieved:
 P(y=1)=P(y=0)=0.5  P(x=1)=P(x=0)=0.5

( ; ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 ( )

I X Y H Y H Y X

H Y p x H Y X x

H Y p x H p

H Y H p

H p

 

  

 

 
 




1 ( )C H p 
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Binary symmetric channel –
Channel capacity

When p=1 bits are inverted but information 
is perfect if invert them back!

0 0

11

X Y
p1

p1

p p

pppp 2log)1(2log)1(C 22 

Example - calculating capacity

 Inputs & Outputs are binary.

 Maximal input uncertainty: H(Input) = 1

 Given a 1% error rate:

H(Input|Output)  = - (0.99 log 0.99 + 0.01 log 0.01)
= 0.0144 + 0.0664 = 0.0808 bits

I(Input;Output) = H(Input) - H(Input | Output)
= 1 - 0.0808 = 0.9192 bits

 This is also the capacity since it is the maximal 
input/output information.

Dealing with Errors…

 Assuming we know that there are going to be 
some errors, how can we be sure to get our 
information across?

 If we’re really unlucky, we can’t.  But we can 
make sure to be able to tolerate any reasonable 
amount of error.

 What’s one way for us to be able to be sure we 
can detect any single error in our message?

 How can we make sure we can correct any 
error in the message?
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How good is Error Correction?

• We can do better.  We can get as close to the channel 
capacity as we want, though we may need long messages.

• The channel capacity is defined as the information that 
passes through the channel.

• If we are correct in our definition of information, it should 
give us a perfect measure of how many bits we can send 
through the channel.

• Intuitively channel capacity makes sense. We start with 
maximal uncertainty about the symbol that entered the 
channel. That uncertainty is lowered when we see a 
symbol come out.

Channel coding theorem

 An (M, n) code is:
 Index set {1,2,…,M}

 Encoding function 

{1, …, M}  {Xn(1), …, Xn(M)}

 Decoding function

Yn  {1, …, M}

 The rate of an (M, n) code is:

 The rate is achievable if there exists a sequence  (2nR, n) 
leading to an error0 for n∞.

 All the rates below the channel capacity are 
achievable (R≤C).

logM
R

n


Outline

 Entropy

 Mutual information

 Information transmission 

 Continuous variables 

 Neurons & Entropy

Elements of Information Theory, T. Cover & J. Thomas, Chapter 9. 
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Continuous variables

 A real number has an infinite number of bits, 
therefore theoretically, infinite information. 

 However, there is always noise (or quantization) 
which defines a number of discriminable levels

Entropy & Differential entropy

 Usage of probability density instead of probability

 Note: for Δr0 the log diverges…

2 2( ) lim { ( ) log } ( ) log ( )rh r H r r p r p r dr    

Differential entropy

 Example 1: Uniform distribution (interval [0,a])

Note: for a<1 the differential entropy is negative

 Example 2: Normal distribution (µ=0,σ)

2 2 2 2/ 2 / 2 2
2

1 1 1
( ) log log (2 )

22 2
x xh x e e dx e   

   
     

 

2( ) ( ) log ( )h x p x p x dx 

2 2 2

0

1 1 1
( ) log log log

a

h x dx a
a a a

    
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Entropy of a sampled 
continuous variable

 Following a n bit quantization of the variable 
(i.e. accuracy of 2-n)

H(X)=h(X)-log(2-n)=h(X)+n

 Example: a uniform distribution over the 
interval [0,1] with a resolution of ~0.001
H(X)=log2(1)+log2(1000)~10

 Example: a uniform distribution over the 
interval [0,¼] with a resolution of ~0.001
H(X)=log2(¼)+log2(1000)~8
Since the first two bits are always 0.

Outline

 Entropy

 Mutual information

 Information transmission 

 Continuous variables 

 Neurons & Entropy

Theoretical Neuroscience, Peter Dayan & Larry Abbott, Ch. 4.

Spikes, F. Rieke, D. Warland, R. van Steveninck & W. Bialek.

Neurophysiological based 
information theoretic questions

 How much information do the neurons convey?

 How much information is conveyed through a spike?

 How much does spiking activity tell us about a stimulus?

 Is the neural representation optimal?

 Is the information encoded by a neuronal population 
redundant?

 Can rate by itself encode all the information?

 Is there and if so, what is the theoretical limit on the 
information in the nervous system?
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Rate encoding – maximum entropy I

 If information is conveyed by the firing rate r, 
all firing rates should have equal probability.

 For a neuron with a rate rrange= rmax- rmin

 Thus, when the rate represents another non-
uniform variable, maximal entropy will be 
achieved through histogram equalization.

1
( )

range

p r
r



Histogram equalization

 What is the transfer function, T ?

X Y

 If s is not uniformly distributed, then need to 
adjust, for monotonically increasing r(s):

 Assign more bits to regions of higher probability.

( ) ( )range

dr dr
r p s p s

ds ds
   

( ) ( )
( )

range

r s s r s
p s s

r

  
 

Rate encoding – maximum entropy II
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Maximum entropy for a population

 For a population maximum, every neuron must 
have maximum entropy by itself.

 Two neurons firing with identical mean rates 
are the same as one neuron firing for twice as 
long leading to an entropy which is 
proportional to the number of neurons.

 This type of independent coding is usually 
termed “Factorial code”.

1 2 1 2, 1 2( )r r r rH H H iff r and r independent  

Entropy of a spike train

 How many different patterns can occur over a fixed 
length T?

 If all bins are independent, this is equivalent to 
tossing a biased coin T/t times.

 Each toss has:  

2 2( log ( ) (1 ) log (1 ))total

T
H r t r t r t r t

t
           


Proportional to time.

2 2(( ) log ( ) (1 ) log (1 ))H r t r t r t r t        

Information for spike trains

 Need to consider every pattern of spikes over 
an interval T as being a single binary number.  

 Many possible binary numbers; may be 
difficult to estimate p(r|s) unless T is very 
short.

 Information rate is the bits per second (or 
bits per spike) related to the input

 If the chance of a spike in a bin is small (low 
rate, or high sampling rate) then we can 
approximate the entropy rate as:

2/ log ( )H T r r t  
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Encoding – spike time vs. count

 What is the maximal information using a spike 
count measure vs. the spike timing?

 Example: assuming a neuron with 3ms 
refractory period what is the maximal entropy 
given 10 successive bins of 3ms each holding 
a maximum of one spike of vs. one bin of 
30ms allowing a maximum of 10 spikes?

 Is the neuron conveying information when it is 
not firing?

Neurophysiological based 
information theoretic questions

 How much information do the neurons convey?

 How much information is conveyed through a spike?

 How much does spiking activity tell us about a stimulus?

 Is the neural representation optimal?

 Is the information encoded by a neuronal population 
redundant?

 Can rate by itself encode all the information?

 Is there and if so, what is the theoretical limit on the 
information in the nervous system?
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