

Outline

- Entropy
- Mutual information
- Information transmission
- Continuous variables
- Neurons & Entropy
- Elements of Information Theory, T. Cover & J. Thomas, Ch. 2. Information Theory, Inference, and Learning Algorithms, David J.C. MacKay, Ch. 2 (Online version is available on the course web site).

2

Introduction

- Information theory is a branch of mathematics founded by Claude Shannon in the 1940s.
- Information theory sets up quantitative measures of information and of the capacity of various systems to transmit, store, and otherwise process information.
- Usage: communication, compression, cryptography, computer science, biology, psychology, neuroscience, etc.

	Entropy
	■ The entropy of a uncertainty about
	■ The entropy is m required to fully de
	Other symbols me.g. English letters
	 Could also be the questions required
 IBG	This type of entropy is also distinguish it from the entrop
	Simple exar
	 A coin flip resuch can mark the control
 and the	H ead = 0
	 Following this sequences of
	H,H,T,H,T
 IBG	■ Exactly 1 bit is
	Simple exar
	 Assuming that we can encode
	Coin A Coin B Encoding
	Following this e sequences of contents
 (I	00101110 ←→

- **opy** of a system is the amount of y about the state of that system.
- py is measured by the number of bits fully describe the state of the system.
- nbols may easily be transformed to bits letters may be represented by 5 bits.
- o be thought of as the number of yes/no equired to establish full understanding.

py is also termed Shanon's entropy or Information entropy to the entropy used in Thermodynamics

example: coin flipping I

flip results in either heads or tails. We ark the outcomes using 1 bit:

> ad = 0 **T**ail = 1

ing this encoding scheme, the following nces of coin flips are equivalent:

H,T,H,T ←→ 00101

1 bit is required to represent each toss.

5

example: coin flipping II

ng that we flip two coins simultaneously, encode the outcomes as:

Coin A	Н	Н	Т	Т
Coin B	Н	Т	Н	Т
Encoding	00	01	10	11

ig this encoding scheme the following ces of coin flips are equivalent:

IBG

1 2 3 4 H T T T Trial Coin A Coin B H H T H

Exactly 2 bits are required to represent each toss.

Simp		
■ Wha We on mixed		
■ The p		
■ We v	*	
	IBG	
Sim		
■ Follow sequen		
1		
■ The a		
N	IBG	
Entr		
■ The e		
require In the f		
■ Infor		

ole example: coin flipping III

- happens if we don't care about the order? ly care if we got both heads, both tails, or a
- probability of each of these outcomes:

both heads - 25% both tails 25% mixed 50%

vill use the following encoding scheme:

mixed - 0 both heads - 10 hoth tails - 11

7

ple example: coin flipping IV

wing this encoding scheme the following ces of coin flips may be encoded as:

100110 ←

Trial 1 2 3 4 Coin A Н TT H H T H Coin B

verage number of bits we use:

Both heads: 0.25×2 bits = 0.5 bits $0.25 \times 2 \text{ bits } = 0.5 \text{ bits}$ Both tails: ∕lixes: $0.5 \times 1 \text{ bit} = 0.5 \text{ bits}$ 1.5 bits

8

opy & Information

- ntropy of a system is the uncertainty ts state, i.e. the expected number of bits ed to fully describe the state of the system.
- final two-coin-flip example, we had a 1.5 bit nty about the outcome.
- mation is the amount our uncertainty is reduced given new knowledge.
- In the two-coin-flip example, if we got new knowledge that the two coins flipped were the same, we will gain 0.5 bits of information (as there is only 1 bit of uncertainty left).

	Ent
	■ Ent
	Oth und exp
	Historythereforedynsys
IBG	sys
	Sha
	Sr1 l
	ch (e.
	Pr••
 IBG	
	Sha
	The su (low pi
	Indep

tropy

- tropy is the expected length in bits of a binary ssage conveying information
- ner common terms: code complexity, certainty, missing/required information, pected surprise, information content, etc.
- storically, entropy was defined in classic ermodynamics as the "amount of un-usable at in system" and in statistical thermonamics as the "measure of the disorder in the stem", the two were proven to be equivalent.

10

annon Information

- mallest unit of information is the "bit"
- bit = the amount of information needed to noose between two equally-likely outcomes .g. flip a coin)
- roperties:
 - Information for independent events adds
 - Information is zero if we already know the outcome

11

annon Information: Surprise I

urprise of a single event is high for unexpected robability) events and low for expected events.

$$\begin{array}{lll} p(r_1) = 1 & \Rightarrow & h(p(r_1)) = 0 \\ p(r_2) \to 0 & \Rightarrow & h(p(r_2)) \to \infty \end{array}$$

pendent events: $p(r_1, r_2) = p(r_1)p(r_2)$ Implies: $h(p(r_1, r_2)) = h(p(r_1)) + h(p(r_2))$

$$h(p(r)) = -\log_2(p(r))$$

Logarithms - useful formulas

$$\frac{d\log_a X}{dX} = \frac{\log_a e}{X}$$

14

Entropy - definition

Entropy is the mean value of the surprise over all possible observations

$$H(X) = E_p[-\log_2 p(x)]$$

In the discrete case:

$$H(X) = -\sum_{x} p(x) \log_2 p(x)$$

<u>-</u>
IBG
IBG
-

Example: a two outcome event I

■ The entropy of the result of a fair coin toss:

$$H = -[0.5 \cdot \log_2(0.5) + (1 - 0.5) \cdot \log_2(1 - 0.5)]$$

= -[-0.5 - 0.5] = 1

■ The entropy of an unfair (99% head) coin toss:

$$H = -[0.99 \cdot \log_2(0.99) + (1 - 0.99) \cdot \log_2(1 - 0.99)]$$

= -[-0.0144 - 0.0644] = 0.08

16

Example: a two outcome event II

17

IBG

Entropy properties

- Entropy is always positive
- Entropy is maximum if p(r) is constant
- Entropy is minimum if p(r) is a delta function
- The higher the entropy, the more you learn (on average) by observing values of the random variable
- The higher the entropy, the less you can predict the values of the random variable

Calculating Entropy: The simple case

• If all *n* possible outcomes of situation *X* are equally probable, then our uncertainty about which one will occur can be calculated by:

$$H(X) = \log_2(n)$$
 bits

• Out of gold eight coins, one of which is a fake, while you know the other seven are real. You know the fake one has a different weight than the rest. How many weightings on a balance scale will it take to determine the fake? What if you only had seven coins with one fake? What if you had nine coins with one fake?

19

Encoding based on entropy I

- Suppose we have 4 symbols: A C G T with
- The symbol probabilities are: $P_a = 0.5$ $P_c = 0.25$ $P_a = P_t = 0.125$
- Leading to surprises:
 h_a = 1bit h_c = 2bit h_g = h_t = 3 bit
- Thus the mean uncertainty of a symbol is: H = 1*0.5+2*0.25+0.125*3+0.125*3 = 1.75 bit

20

Encoding based on entropy II

- One option for encoding uses 2 bits for each symbol: A = 00 C = 01 G = 10 T = 11
- In the other option the number of binary digits equals the surprise: A = 1 C=01 G=000 T=001
- So the string ACATGAAC which has frequencies the same as the probabilities defined above, is coded as:

Method 1	16 (2 bits per symbol)
Method 2	14 (1.75 bits per symbol)

	Enc
	■ In th
	In the opti
	■ The com
IBG	
	Out
	■ Er
	MIn
	■ Co
IBG	
	Joir
	■ Th
	sir
	■ In

oding based on entropy III

- his specific case, can we find a better orter) encoding ?
- he general case, how can we formulate the imal encoding?
- ese questions are handled under the data npression topic...

ts of Information Theory, T. Cover & J. Thomas, Chapter 5.

22

line

- ntropy
- utual information
- formation transmission
- ontinuous variables
- eurons & Entropy

23

nt entropy

ne joint entropy may be considered a ngle vector valued random variable:

$$H(X,Y) = E_{p(x,y)}[-\log_2 p(x,y)]$$

the discrete case:

$$H(X,Y) = -\sum_{y \in Y} \sum_{x \in X} p(x,y) \log_2 p(x,y)$$

Conditional entropy

Same formulation, but using the conditional density:

$$H(Y|X) \stackrel{\text{def}}{=} \sum_{x \in \mathcal{X}} p(x) H(Y|X = x)$$

$$= -\sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y|x) \log p(y|x)$$

$$= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(y,x) \log p(y|x)$$

$$= -E_{p(x,y)} \log p(y|x).$$

25

The conditional entropy chain rule

$$H(Y|X) = H(Y,X) - H(X)$$

Proof:

$$\begin{split} H(Y|X) &= -E_{p(x,y)} \log p(y|x) \\ &= -E_{p(x,y)} \log \left(\frac{p(y,x)}{p(x)}\right) \\ &= -E_{p(x,y)} (\log p(y,x) - \log p(x)) \\ &= -E_{p(x,y)} \log p(y,x) + E_{p(x)} \log p(x) \\ &= H(Y,X) - H(X). \end{split}$$

Thus:

H(X,Y) = H(X) + H(Y | X) = H(Y) + H(X | Y)H(Y | X) = H(X | Y) + H(Y) - H(X)

26

IBG

Mutual information I

- The entropy tells us how much we can learn (therefore how much we don't know)
- The mutual information between *r* and *s* is:
 - How much do we learn about r by observing s?
 - How much more do we know about r after observing s?
 - How much easier is it to predict *r* after observing *s*?
- Therefore: How much has the entropy of r decreased after observing s?

The doctor example I

- We're back to the doctor who need to distinguish between:
 - The flu p(x₁)=0.9
 - Severe infection $p(x_2) = 0.1$
- He has two tests:

Blood test Y	Flu	Infection
Positive	0.2	0.7
Negative	0.8	0.3
		_

 Urine test Z
 Flu
 Infection

 Positive
 0.1
 0.5

 Negative
 0.9
 0.5

Which test gives more information about the state of the patient?

29

IBG

IBG

The doctor example II

 $I_{\rm m} = \sum_{s,r} P[s]P[r|s]\log_2\left(\frac{P[r|s]}{P[r]}\right)$

 $P(y_+)=0.9*0.2+0.1*0.7=0.25 \ P(y_-)=0.75 \ P(z_+)=0.9*0.1+0.1*0.5=0.14 \ P(z_-)=0.86$

 $H(X)=-(0.9*log_2(0.9)+0.1*log_2(0.1)) = 0.436$

$$\begin{split} &\mathsf{I}(\mathsf{Y};\mathsf{X}) {=} 0.9^*0.2^*\mathsf{log}_2(0.2/0.25) {+} 0.9^*0.8^*\mathsf{log}_2(0.8/0.75) {+} \\ &0.1^*0.7^*\mathsf{log}_2(0.7/0.25) {+} 0.1^*0.3^*\mathsf{log}_2(0.3/0.75) {=} 0.0734 \end{split}$$

$$\begin{split} &I(Z;X) = 0.9^*0.1^*log_2(0.1/0.14) + 0.9^*0.9^*log_2(0.9/0.86) + \\ &0.1^*0.5^*log_2(0.5/0.14) + 0.1^*0.5^*log_2(0.5/0.86) = 0.0621 \end{split}$$

Thus, the blood test is more informative...

		Properties of
		Zero if r and s $p(r,s) = p(r)p(r)$
		■ Cannot be mo $I(R,S) \le H(R)$
		• Cannot be inc $I(f(R), S) \le I(R, R)$
	IBC	Holds true for any neural network, or out more informat
		Properties of
		Properties of I(X;Y)=H(X)-H
		■ I(X;Y)=H(X)-H
		 I(X;Y)=H(X)-H I(X;Y)=H(Y)-H I(X;Y)=H(X)+H I(X;Y)= I(Y;X)
		 I(X;Y)=H(X)-H I(X;Y)=H(Y)-H I(X;Y)=H(X)+H I(X;Y)= I(Y;X) I(X;X)=H(X)

Relative entropy ≡ Kullback Liebler (KL) divergence

The Kullback-Leibler (KL) divergence is a 'distance' measure between probability distributions.

$$D_{KL}(p,q) = \sum_{r} p(r) \log_2 \frac{p(r)}{q(r)}$$

 $D_{KL}(p,q) \neq D_{KL}(q,p)$, and $D_{KL} \geq 0$

 $I_m = D_{KL}(p(r,s), p(r)p(s))$

ullet The excess message length needed to use p(x) optimized code for messages based on q(x)

34

IBG

Relative entropy properties

 $I_m = D_{KL}(p(r,s), p(r)p(s))$

 $I_{\scriptscriptstyle m} = D_{\scriptscriptstyle KL}(p(s,r),p(s)p(r))$

 $I_m \neq D_{KL}(p(r)p(s),p(r,s))$

35

Additional (in) equalities

- D_{KL}(p,q)≥0 (information inequality) $D_{KL}(p,q)=0$ iff p(x)=q(x) for every x
- I(X;Y)≥0 (Non negativity of mutual information) I(X;Y)=0 iff Y & X are independent
- $\qquad \qquad H(X|Y) {\leq} H(X) \qquad \qquad \text{(Conditioning reduces entropy)}$

If f is convex $\rightarrow E(f(X)) \ge f(E(X))$ (Jensen inequality)

	Outline
IBG	 Entropy Mutual info Informatio Continuou Neurons &
	Compress
	 During compremoved from During transithe data to expense.
IBG	Information
	Encoder Discrete channey through a proba Memoryless chappends only on the second control of the

	Cha
	1. A v a s pa he
	syl 2. A v a s co
IBG	line co let
	Prop
	■ Each numbe
	any par differen The e capacit
 IBG	transmi ■ The to can be which in
	Oha
	Cha For
	cap tha erro

nnel examples

- word W in English may be transformed into series of syllables via speech which are ssed through the air channel and upon aring converted back to a series of llables and to the reconstructed word.
- word $oldsymbol{W}$ in English may be transformed into series of letters represented by 8 bit ASCII de and passed through a communication e and upon receiving at a different imputer transformed back to a series of ters and to the reconstructed word.

40

erties of Channels

- channel has a transmission rate the r of symbols it can transmit per time unit.
- nels have error rates, which determine, for rticular symbol, the probability that a nt symbol will come out of the channel.
- error rate of the channel determines its y - the bits of information that are itted per symbol sent.
- ransmission rate and the channel capacity multiplied to get its data rate - the rate at nformation can be sent across the channel.

41

nnel capacity

a discrete memoryless channel: the pacity is limiting information transport rate t can be achieved with vanishingly small or probability.

$$C = \max_{p(x)} I(X;Y)$$

	Noi
	■ As
	an $I(X)$
	■ Th
	p(x
IBG	
	Noi
	Noi
	Noi:
	λ
	λ
IBG	λ
IBG)
IBG	λ

47

Dealing with Errors...

- Assuming we know that there are going to be some errors, how can we be sure to get our information across?
- If we're really unlucky, we can't. But we can make sure to be able to tolerate any reasonable amount of error.
- What's one way for us to be able to be sure we can detect any single error in our message?
- How can we make sure we can *correct* any error in the message?

•
 •
•
 •
•
•
•
•

How good is Error Correction?

- We can do better. We can get as close to the channel capacity as we want, though we may need long messages.
- The channel capacity is defined as the information that passes through the channel.
- If we are correct in our definition of information, it should give us a perfect measure of how many bits we can send through the channel.
- Intuitively channel capacity makes sense. We start with maximal uncertainty about the symbol that entered the channel. That uncertainty is lowered when we see a symbol come out.

49

IBG

Channel coding theorem

- An (M, n) code is:
 - Index set {1,2,...,M}
 - Encoding function
 - $\{1,\,...,\,M\} \to \{X^n(1),\,...,\,X^n(M)\}$
 - Decoding function
 Yⁿ → {1, ..., M}
- The rate of an (M, n) code is: $R = \frac{\log M}{n}$
- The rate is achievable if there exists a sequence (2^{nR}, n) leading to an error→0 for n→∞.
- All the rates below the channel capacity are achievable (R≤C).

50

IBG

Outline

- Entropy
- Mutual information
- Information transmission
- Continuous variables
- Neurons & Entropy

IBG

Elements of Information Theory, T. Cover & J. Thomas, Chapter 9.

Continuous variables

- A real number has an infinite number of bits, therefore theoretically, infinite information.
- However, there is always noise (or quantization) which defines a number of discriminable levels

52

Entropy & Differential entropy

Usage of probability density instead of probability

$$\begin{array}{rcl} H & = & -\sum p[r] \Delta r \log_2(p[r] \Delta r) \\ & = & -\sum p[r] \Delta r \log_2 p[r] - \log_2 \Delta r \end{array}$$

■ Note: for Δr→0 the log diverges...

 $h(r) = \lim_{\Delta r} \{H(r) + \log_2 \Delta r\} = -\int p(r) \log_2 p(r) dr$

53

Differential entropy

Note: for a<1 the differential entropy is negative

■ Example 2: **Normal distribution** (μ=0,σ)

$$h(x) = \frac{-1}{\sigma\sqrt{2\pi}} \int e^{-x^2/2\sigma^2} \log \left(\frac{1}{\sigma\sqrt{2\pi}} e^{-x^2/2\sigma^2} \right) dx = \frac{1}{2} \log_2(2\pi e\sigma^2)$$

	Entropy
	Following (i.e. accu
IBG	 Example interval [I H(X)=log Example interval [I H(X)=log Since the
	Outline
	EntropMutualInformContin
IBG	■ Neuron Theoretical Net Spikes, F. Riek
	Neuroph informa
	How muchHow much

of a sampled ous variable

- $\log a n$ bit quantization of the variable uracy of 2^{-n})
 -)=h(X)-log(2-n)=h(X)+n
- e: a uniform distribution over the [0,1] with a resolution of ~0.001 g₂(1)+log₂(1000)~10
- : a uniform distribution over the $[0,\frac{1}{4}]$ with a resolution of ~ 0.001 g₂(1/4)+log₂(1000)~8 e first two bits are always 0.

55

- information
- ation transmission
- uous variables
- ns & Entropy

uroscience, Peter Dayan & Larry Abbott, Ch. 4. ke, D. Warland, R. van Steveninck & W. Bialek.

56

hysiological based tion theoretic questions

- information do the neurons convey?
- information is conveyed through a spike?
- How much does spiking activity tell us about a stimulus?
- Is the neural representation **optimal**?
- Is the information encoded by a neuronal population **redundant**?
- Can rate by itself encode all the information?
- Is there and if so, what is the $theoretical\ limit$ on the information in the nervous system?

Rate encoding - maximum entropy I

- If information is conveyed by the firing rate r, all firing rates should have equal probability.
- \blacksquare For a neuron with a rate $r_{\text{range}}\text{=}\ r_{\text{max}}\text{-}\ r_{\text{min}}$

$$p(r) = \frac{1}{r_{range}}$$

Thus, when the rate represents another non-uniform variable, maximal entropy will be achieved through histogram equalization.

58

Histogram equalization

■ What is the transfer function, *T*?

59

IBG

Rate encoding - maximum entropy II

If s is not uniformly distributed, then need to adjust, for monotonically increasing r(s):

$$\frac{dr}{ds} = r_{range} \cdot p(s)$$

 $\frac{dr}{ds} = r_{range} \cdot p(s) \qquad \Rightarrow \qquad \frac{dr}{ds} \propto p(s)$

Assign more bits to regions of higher probability.

Maximum entropy for a population

- For a population maximum, every neuron must have maximum entropy by itself.
- Two neurons firing with identical mean rates are the same as one neuron firing for twice as long leading to an entropy which is proportional to the number of neurons.

 $H_{r_1,r_2} \le H_{r_1} + H_{r_2}$ (= iff r_1 and r_2 independent)

 This type of independent coding is usually termed "Factorial code".

61

Entropy of a spike train

- How many different patterns can occur over a fixed length T?
- If all bins are independent, this is equivalent to tossing a biased coin T/∆t times.
- $$\begin{split} & \quad \textbf{Each toss has:} \quad H = -((r\Delta t)\log_2(r\Delta t) + (1-r\Delta t)\log_2(1-r\Delta t)) \\ & \quad H_{\textit{total}} = -\frac{T}{\Delta t} \cdot (r \cdot \Delta t \cdot \log_2(r \cdot \Delta t) + (1-r \cdot \Delta t) \cdot \log_2(1-r \cdot \Delta t)) \end{split}$$

Proportional to time. $^{\frac{k_0}{k_0}\frac{g_0}{g_0}} \qquad \boxed{ 10101101010010011110}$

62

Information for spike trains

- Need to consider every pattern of spikes over an interval T as being a single binary number.
- Many possible binary numbers; may be difficult to estimate p(r|s) unless T is very short
- Information rate is the bits per second (or bits per spike) related to the input
- If the chance of a spike in a bin is small (low rate, or high sampling rate) then we can approximate the entropy rate as:

 $H/T \approx -r \log_2(r\Delta t)$

Encoding – spike time vs. count

- What is the maximal information using a spike count measure vs. the spike timing?
- Example: assuming a neuron with 3ms refractory period what is the maximal entropy given 10 successive bins of 3ms each holding a maximum of one spike of vs. one bin of 30ms allowing a maximum of 10 spikes?
- Is the neuron conveying information when it is not firing?

64

IBG

Neurophysiological based information theoretic questions

- How much information do the neurons **convey**?
- How much information is conveyed through a **spike**?
- How much does spiking activity tell us about a stimulus?
- Is the neural representation optimal?
- Is the information encoded by a neuronal population redundant?
- Can rate by itself encode all the information?
- Is there and if so, what is the theoretical limit on the information in the nervous system?