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Overview

m Stochastic processes

m Extracellular recording

m Point processes

Modeling our measurements

= Repetition of the same experiment will not lead
to the exact same response.

m Example: The spike train of a neuron in
response to stimuli is different...

= Typically we would like to know:
e When is something unexpected?
e What are the “normal” values?

= Thus, analyzing a sequence of measurements
requires modeling of the underlying process.




Stochastic process - definition

m Stochastic — (1) Involving chance or
probability (2) Random (3) Non-deterministic

(Merriam-Webster & Wikipedia) .

m Stochastic process - an indexed collection of
random variables {X}}, where the index i
ranges through an index set /, defined on the
probability space (Q, P). The index set may
be discrete or continuous wiipedia).

m A stochastic process defined over the time
interval domain is called a time series.

m A stochastic process defined over the space
interval domain is called a random field.

Stochastic process - examples

» Example 1: A continuous time series of
the measured temperature in Bar-llan.

m Example 2: A discrete time series of
whether any rain fell in Bar-llan during a
specific day.

m Example 3: A discrete stochastic
process (not a time series) of the heights
of people entering the Gonda building.

Stationary processes

= A (strictly) stationary process is a stochastic
process in which the probability density function
{ (pdf) of some random variable X does not
change over indexes (such as time or position).

= A weak or wide-sense stationary (WSS) process
only require that 15t and 2" moments do not
® vary with respect to time.

E(X(t)) = U, (t) = u, (t+1) VT ER

E((X(t1) = px(ty) - (X (t2) — #x(fz)) = Cov(X(ty), X(t2))
= Cov(X(t; + 1), X(t; + 1)) = Cov(X(t; — t3), 0)




Stationary processes - examples

m Stationary example: Sequence of L/R button
presses. Each press has a 90% probability of
being in the same direction as its predecessor.

e Stationary despite strong temporal covariance.

= Non-stationary example: Amount of rainfall for
each day of the year.

e In many cases long term changes may be removed
using de-trending techniques.

Ergodicity

= [f averaging over time and space are equal the
process is ergodic.

= Ergodicity is usually described in terms of
properties of an ensemble of objects.

m Example: Finding out how people spend their
spare time. Sampling one person over 1000
days would yield the same result as sampling
1000 people once in an ergodic system.

Reading material:
http:/news.softpedia.com/news/W hat-is-ergodicity-15686.shtml

Ergodic & stationary processes

= In an ergodic process, the following are equal
e Averaging across repeated trials
e Averaging across time for a single trial

= An ergodic process is always stationary, the
reverse may not be true

m A stationary process is ergodic if samples that
are far enough in time are independent
(asymptotic independence).




Overview

m Stochastic processes
m Extracellular recording

= Point processes

Recommended reading:
R. Lemon, Methods for neuronal recording in conscious animals, 1984, Chapter 2

Formation of extracellular potential |

= Different membrane potentials of the neuron
lead to flow of current within the neuron which
is matched by an extracellular return current.
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Sink — Active area, current flows into the neuron
Source - Inactive region, current flow out of the neuron.

Formation of extracellular potential Il

EXTRACELLULAR RECORDING
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Somatic extracellular spike shape

= Soma — Biphasic
shape (-/+), s
e Negative due to flow Timese
from the initial
segment
o Positive due to flow
to dendrite. 3

2

= Magnitude is s
proportional to
surface area divided
by the distance.

Decay of extracellular signal

Extracellular recording |
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Extracellular recording Il
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Multiple units

= The electrode detects multiple
neurons (also called units) which
are close to its tip.

= The signals differ in:

o Amplitude -dependent on cell size
and distance.

e Phase shape - depends on direction
to soma, axon & dendrites.

o Temporal shape - dependent on cell

type. /
%

m Spikes from the same neuron also
vary significantly due to noise,
bursts, drift of electrode, etc..




Sorting multiple units
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Multiple units

= Multiple single units

= Multi-unit activity

m Local field potential

Continuous signal = spike trains |
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« Intracellular soma

« Extracellular

« Intracellular axon

Spike trains

= Transformation from a continuous
recording to a series of discrete
timestamps.

m |s all the information contained in the
timing of the spikes?

= What are we losing?
e Spike shapes
e Non spiking activity
e Sub-threshold activity

Overview

m Stochastic processes
m Extracellular recording

m Point processes




Time series & Point processes

= Continuous time series
e Electroencephalogram (EEG)
e Electromyogram (EMG)
e Intracellular potential
e .

(Note: “Continuous” is the common term but is misleading
since it applies to both discrete and continuous in time)

= Stochastic point processes
e Neural action potentials
e Heart beats
e Behavioral events

Delta functions (reminder)

m Dirac’s delta function

S(x—7)=0 X#T

Té(x—r)dx =1

= Kronecker’s delta function

n=k ié(n):l

n=-u

n=k

§(n—k)={:)

Point process

= The spike train is represented by the sum of
Dirac’s delta functions at its firing times (t;)

p=5t-1)

= Point processes are unitary events in time.
The actual values in time are meaningless.
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Properties of a single spike train

m Firing rate

m Response to events
m Firing pattern

m Exact timing

= Entropy

The neural transformation

x(t)~> — 1(t) — | Spike Generator | — A(t)

x(t) = external signal
1(t) = spike rate
P = actual spikes

We observe A(t), and we need to estimate r(t)

(eventually we will use this to estimate x(t))

Firing rate definition

m There are actually quite a few
definitions to firing rate

e r —rate over the whole period T also called
spike count rate

e <r> - rate averaged over all the trials, also
called average firing rate

e r(t) — trial average rate over a short period
(At>0)

and they are constantly mixed...




Firing rates — number of spikes

Firing rate: r = 7 = %.]g‘p('r)d'r.
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From: Theoretical neuroscience / Dayan & Abbott

Convolution

= Convolution is an operator which takes two
functions fand g and produces a third function
that represents the overlap between fand a
reversed version of g.

= Continuous: (f # g)(t) = / F(r)glt — 7 dr

m Discrete: (f*g)(m) =1 f(n)g(m—n)
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Convolution examples

= Convolution of a box function

] mvea under 1
—
N )

—— e

H i L i i L i
2 s T 05 o [ T s 7

= Convolution of a spiky tunction
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(From: www.wikipedia.org, Brian Amberg)

Convolution & Moving average

A convolution is a general moving average when
the averaging function integral is 1.

= In that case it functions as a smoothing function.

When the averaging function is square it will
function as regular mean using overlapping bins.

Non-square functions enable emphasis of parts
of the window.

Firing rates — sliding windows

| Sliding Gaussian window

Other definitions of firing rate use a sliding
window: r(t) = [23_ drw(r)p(t — 7), with
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Firing rates - causal windows

Temporal averaging with windows is non-
causal. A causal alternative is w(t)=[a2 t e1],
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Smoothing & Convolution

= Smoothing and convolution pitfalls

e Introduces spurious correlations over time

e Hidden assumption about smoothness of
the external sensory or motor data

e Edge effects: what happens at the start
and end of the data?

e Phase lag: peaks of smoothed data may
occur later than the peaks in the original
data. True for non-symmetric kernels and
all causal filters

Tuning curves

r() can be a function of something other than time. e.g.
r(angle) if the rate varies with direction of hand movement

r(x) will still be time-varying if the argument x changes
with(tim)e as x(t). It can also change dependence on x, if
r=r(xt).

Describes the "tuning” of the neuron. x can be a scalar,
vector, or function (pattern)

A tuning curve is a model for the neuron's behavior, and
is always an approximation since neurons are likely to
have multiple inputs and respond to multiple internal and
external variables.
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Sensory tuning curves
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Extra cellular recording of monkey primary motor
cortex M1 in arm-reaching task. Average firing rate is
fitted with 1(S) =1, + (I, —1)-cos(s—s_..)

Spike count variability

= Tuning curves model average behavior.

m Deviations of individual trials are given
by a noise model.
e Additive noise is independent of stimulus
r(s)=f(s) + ¢
e Multiplicative noise is proportional to
stimulus

r(s) =f(s) + g(s)-&




15

Definitions J

= Probability density function - a
function that represents a probability
distribution in terms of integrals.

= Moment - un=T(x—c)”f(x)dx

= Central moment - 4, =E((X —x)")




