

Modeling our measurements

- Repetition of the same experiment will not lead to the exact same response.
- Example: The spike train of a neuron in response to stimuli is different...
- Typically we would like to know:
 - When is something unexpected?
 - What are the "normal" values?
- Thus, analyzing a sequence of measurements requires modeling of the underlying process.

	Stochastic process - definition
	Stochastic – (1) Involving chance or probability (2) Random (3) Non-deterministic (Meriam-Webster & Wkipedia). Stochastic process - an indexed collection of
	random variables $\{X_i\}$, where the index i ranges through an index set I , defined on the probability space (Ω, P) . The index set may be discrete or continuous (Wikipedia).
IBG	 A stochastic process defined over the time interval domain is called a time series. A stochastic process defined over the space interval domain is called a random field.
	Stochastic process - examples
	■ Example 1: A continuous time series of the measured temperature in Bar-Ilan.
	 Example 2: A discrete time series of whether any rain fell in Bar-llan during a specific day.
IBG	Example 3: A discrete stochastic process (not a time series) of the heights of people entering the Gonda building.
	Stationary processes
	A (strictly) stationary process is a stochastic process in which the probability density function (pdf) of some random variable <i>X</i> does not change over indexes (such as time or position).
	A weak or wide-sense stationary (WSS) process only require that 1 st and 2 nd moments do not vary with respect to time.
BG	$\begin{split} E\big(X(t)\big) &= \mu_X(t) = \mu_X(t+\tau) & \forall \tau \in \mathbb{R} \\ E\big((X(t_1) - \mu_X(t_1) \cdot (X(t_2) - \mu_X(t_2)) = Cov(X(t_1), X(t_2)) \\ &= Cov(X(t_1+\tau), X(t_2+\tau)) = Cov(X(t_1-t_2), 0) \end{split}$

IBG

	Stationary processes - examples
IBG	 Stationary example: Sequence of L/R button presses. Each press has a 90% probability of being in the same direction as its predecessor. Stationary despite strong temporal covariance. Non-stationary example: Amount of rainfall for each day of the year. In many cases long term changes may be removed using de-trending techniques.
	Ergodicity
	 If averaging over time and space are equal the process is ergodic.
	 Ergodicity is usually described in terms of properties of an ensemble of objects.
	 Example: Finding out how people spend their spare time. Sampling one person over 1000 days would yield the same result as sampling 1000 people once in an ergodic system.
IBG	Reading material: http://news.softpedia.com/news/What-is-ergodicity-15686.shtml
	Ergodic & stationary processes
	 In an ergodic process, the following are equal Averaging across repeated trials Averaging across time for a single trial
	 An ergodic process is always stationary, the reverse may not be true
	 A stationary process is ergodic if samples that are far enough in time are independent (asymptotic independence).

 Overview
■ Stochastic processes
 ■ Extracellular recording
■ Point processes
 Recommended reading: R. Lemon, Methods for neuronal recording in conscious animals, 1984, Chapter 2
Formation of extracellular potential I
Different membrane potentials of the neuron lead to flow of current within the neuron which is matched by an extracellular return current.
axon A B C A B C A B C Source potential source potential source
Sink – Active area, current flows into the neuron Source – Inactive region, current flow out of the neuron.
 Formation of extracellular potential II
EXTRACELLULAR RECORDING intracellular voltage along exon time 2
measure voltage

Axon – Triphasic shape (+/-/+)

 Continuous signal → spike trains II
• Intracellular soma • Extracellular • Intracellular axon
 Spike trains Transformation from a continuous recording to a series of discrete timestamps. Is all the information contained in the
timing of the spikes? What are we losing? Spike shapes Non spiking activity Sub-threshold activity
 Overview
Stochastic processesExtracellular recording
■ Point processes

IBG

	Time series & Point processes
	Continuous time series Electroencephalogram (EEG) Electromyogram (EMG) Intracellular potential (Note: "Continuous" is the common term but is misleading since it applies to both discrete and continuous in time)
IBG	Stochastic point processes Neural action potentials Heart beats Behavioral events
	Delta functions (reminder)
	■ Dirac's delta function
	$\delta(x-\tau) = 0 \qquad x \neq \tau$
	$\int_{-\infty} \delta(x-\tau) dx = 1$
	 Kronecker's delta function
IBG	$\delta(n-k) = \begin{cases} 1 & n=k \\ 0 & n \neq k \end{cases} \sum_{n=-\infty}^{\infty} \delta(n) = 1$
	Point process
	■ The spike train is represented by the sum of Dirac's delta functions at its firing times (t _i)
	$\rho(t) = \sum_{i=1}^{n} \delta(t - t_i)$
	Point processes are unitary events in time. The actual values in time are meaningless.

	Properties of a single spike train
	Firing rateResponse to eventsFiring patternExact timing
	■ Entropy ■
IBG	
	The neural transformation
	$x(t)$ Sensors $\rightarrow r(t)$ Spike Generator $\rightarrow \rho(t)$
	$x(t) = \text{external signal}$ $r(t) = \text{spike rate}$ $\rho(t) = \text{actual spikes}$
IBG	We observe $\rho(t)$, and we need to estimate $\mathbf{r}(t)$ (eventually we will use this to estimate $\mathbf{x}(t)$)
	Firing rate definition
	 There are actually quite a few definitions to firing rate r - rate over the whole period T also called
	 spike count rate <r> - rate averaged over all the trials, also called average firing rate</r> r(t) - trial average rate over a short period
 SE.	$(\Delta t \rightarrow 0)$

and they are constantly mixed...

IBG

Convolution

- Convolution is an operator which takes two functions f and g and produces a third function that represents the overlap between f and a reversed version of g.
- Continuous: $(f*g)(t) = \int f(\tau)g(t-\tau)\,d\tau$ Discrete: $(f*g)(m) = \sum_n f(n)g(m-n)$

	Firing rates - causal windows
	Temporal averaging with windows is noncausal. A causal alternative is $w(t)=[\alpha^2\ t\ e^{-\alpha}\ t]_+$
IBG	Sliding causal window 1/ α = 100 ms $\frac{3}{8}$ $\frac{1}{8}$ $\frac{1}{10}$ $\frac{1}{10$
	Smoothing & Convolution
	 Smoothing and convolution pitfalls Introduces spurious correlations over time Hidden assumption about smoothness of the external sensory or motor data Edge effects: what happens at the start
IBG	 and end of the data? Phase lag: peaks of smoothed data may occur later than the peaks in the original data. True for non-symmetric kernels and all causal filters
	Tuning curves
	 r() can be a function of something other than time. e.g. r(angle) if the rate varies with direction of hand movement
	 r(x) will still be time-varying if the argument x changes with time as x(t). It can also change dependence on x, if r = r(x,t).
	 Describes the "tuning" of the neuron. x can be a scalar, vector, or function (pattern)
	 A tuning curve is a model for the neuron's behavior, and is always an approximation since neurons are likely to have multiple inputs and respond to multiple internal and external variables.

Spike count variability

- Tuning curves model average behavior.
- Deviations of individual trials are given by a noise model.
 - Additive noise is independent of stimulus $r(s) = f(s) + \xi$
 - Multiplicative noise is proportional to stimulus $\mathsf{r}(\mathsf{s}) = \mathsf{f}(\mathsf{s}) + \mathsf{g}(\mathsf{s}) {\cdot} \xi$

Definitions

■ Central moment - $\mu_n = E((X - \mu)^n)$