Modeling our measurements - Repetition of the same experiment will not lead to the exact same response. - Example: The spike train of a neuron in response to stimuli is different... - Typically we would like to know: - When is something unexpected? - What are the "normal" values? - Thus, analyzing a sequence of measurements requires modeling of the underlying process. | | Stochastic process - definition | |-----|--| | | Stochastic – (1) Involving chance or probability (2) Random (3) Non-deterministic (Meriam-Webster & Wkipedia). Stochastic process - an indexed collection of | | | random variables $\{X_i\}$, where the index i ranges through an index set I , defined on the probability space (Ω, P) . The index set may be discrete or continuous (Wikipedia). | | IBG | A stochastic process defined over the time interval domain is called a time series. A stochastic process defined over the space interval domain is called a random field. | | | | | | | | | Stochastic process - examples | | | ■ Example 1: A continuous time series of the measured temperature in Bar-Ilan. | | | Example 2: A discrete time series of
whether any rain fell in Bar-llan during a
specific day. | | IBG | Example 3: A discrete stochastic
process (not a time series) of the heights
of people entering the Gonda building. | | | | | | | | | Stationary processes | | | A (strictly) stationary process is a stochastic process in which the probability density function (pdf) of some random variable <i>X</i> does not change over indexes (such as time or position). | | | A weak or wide-sense stationary (WSS) process only require that 1 st and 2 nd moments do not vary with respect to time. | | BG | $\begin{split} E\big(X(t)\big) &= \mu_X(t) = \mu_X(t+\tau) & \forall \tau \in \mathbb{R} \\ E\big((X(t_1) - \mu_X(t_1) \cdot (X(t_2) - \mu_X(t_2)) = Cov(X(t_1), X(t_2)) \\ &= Cov(X(t_1+\tau), X(t_2+\tau)) = Cov(X(t_1-t_2), 0) \end{split}$ | IBG | | Stationary processes - examples | |-----|---| | IBG | Stationary example: Sequence of L/R button presses. Each press has a 90% probability of being in the same direction as its predecessor. Stationary despite strong temporal covariance. Non-stationary example: Amount of rainfall for each day of the year. In many cases long term changes may be removed using de-trending techniques. | | | | | | Ergodicity | | | If averaging over time and space are equal the
process is ergodic. | | | Ergodicity is usually described in terms of
properties of an ensemble of objects. | | | Example: Finding out how people spend their
spare time. Sampling one person over 1000
days would yield the same result as sampling
1000 people once in an ergodic system. | | IBG | Reading material:
http://news.softpedia.com/news/What-is-ergodicity-15686.shtml | | | | | | Ergodic & stationary processes | | | In an ergodic process, the following are equal Averaging across repeated trials Averaging across time for a single trial | | | An ergodic process is always stationary, the
reverse may not be true | | | A stationary process is ergodic if samples that
are far enough in time are independent
(asymptotic independence). | |
Overview | |--| | ■ Stochastic processes | |
■ Extracellular recording | | ■ Point processes | |
Recommended reading: R. Lemon, Methods for neuronal recording in conscious animals, 1984, Chapter 2 | | Formation of extracellular potential I | | Different membrane potentials of the neuron lead to flow of current within the neuron which is matched by an extracellular return current. | | axon A B C A B C A B C Source potential source potential source | | Sink – Active area, current flows into the neuron Source – Inactive region, current flow out of the neuron. | | | |
Formation of extracellular potential II | | EXTRACELLULAR RECORDING intracellular voltage along exon time 2 | | measure voltage | Axon – Triphasic shape (+/-/+) |
Continuous signal → spike trains II | |---| | • Intracellular soma • Extracellular • Intracellular axon | | | | Spike trains Transformation from a continuous recording to a series of discrete timestamps. Is all the information contained in the | | timing of the spikes? What are we losing? Spike shapes Non spiking activity Sub-threshold activity | | | |
Overview | | Stochastic processesExtracellular recording | | ■ Point processes | IBG | | Time series & Point processes | |-----|--| | | Continuous time series Electroencephalogram (EEG) Electromyogram (EMG) Intracellular potential (Note: "Continuous" is the common term but is misleading since it applies to both discrete and continuous in time) | | IBG | Stochastic point processes Neural action potentials Heart beats Behavioral events | | | | | | Delta functions (reminder) | | | ■ Dirac's delta function | | | $\delta(x-\tau) = 0 \qquad x \neq \tau$ | | | $\int_{-\infty} \delta(x-\tau) dx = 1$ | | | Kronecker's delta function | | IBG | $\delta(n-k) = \begin{cases} 1 & n=k \\ 0 & n \neq k \end{cases} \sum_{n=-\infty}^{\infty} \delta(n) = 1$ | | | | | | | | | Point process | | | ■ The spike train is represented by the sum of Dirac's delta functions at its firing times (t _i) | | | $\rho(t) = \sum_{i=1}^{n} \delta(t - t_i)$ | | | Point processes are unitary events in time.
The actual values in time are meaningless. | | | Properties of a single spike train | |---------|---| | | Firing rateResponse to eventsFiring patternExact timing | | | ■ Entropy
■ | | IBG | | | | The neural transformation | | | $x(t)$ Sensors $\rightarrow r(t)$ Spike Generator $\rightarrow \rho(t)$ | | | $x(t) = \text{external signal}$ $r(t) = \text{spike rate}$ $\rho(t) = \text{actual spikes}$ | | IBG | We observe $\rho(t)$, and we need to estimate $\mathbf{r}(t)$ (eventually we will use this to estimate $\mathbf{x}(t)$) | | | | | | Firing rate definition | | | There are actually quite a few definitions to firing rate r - rate over the whole period T also called | | | spike count rate <r> - rate averaged over all the trials, also called average firing rate</r> r(t) - trial average rate over a short period | |
SE. | $(\Delta t \rightarrow 0)$ | and they are constantly mixed... IBG ### Convolution - Convolution is an operator which takes two functions f and g and produces a third function that represents the overlap between f and a reversed version of g. - Continuous: $(f*g)(t) = \int f(\tau)g(t-\tau)\,d\tau$ Discrete: $(f*g)(m) = \sum_n f(n)g(m-n)$ | | Firing rates - causal windows | |-----|--| | | Temporal averaging with windows is noncausal. A causal alternative is $w(t)=[\alpha^2\ t\ e^{-\alpha}\ t]_+$ | | | | | IBG | Sliding causal window 1/ α = 100 ms $\frac{3}{8}$ $\frac{1}{8}$ $\frac{1}{10}$ $\frac{1}{10$ | | | | | | | | | Smoothing & Convolution | | | Smoothing and convolution pitfalls Introduces spurious correlations over time Hidden assumption about smoothness of
the external sensory or motor data Edge effects: what happens at the start | | IBG | and end of the data? Phase lag: peaks of smoothed data may occur later than the peaks in the original data. True for non-symmetric kernels and all causal filters | | | | | | | | | Tuning curves | | | r() can be a function of something other than time. e.g. r(angle) if the rate varies with direction of hand movement | | | r(x) will still be time-varying if the argument x changes
with time as x(t). It can also change dependence on x, if
r = r(x,t). | | | Describes the "tuning" of the neuron. x can be a scalar,
vector, or function (pattern) | | | A tuning curve is a model for the neuron's behavior, and
is always an approximation since neurons are likely to
have multiple inputs and respond to multiple internal and
external variables. | # Spike count variability - Tuning curves model average behavior. - Deviations of individual trials are given by a noise model. - Additive noise is independent of stimulus $r(s) = f(s) + \xi$ - Multiplicative noise is proportional to stimulus $\mathsf{r}(\mathsf{s}) = \mathsf{f}(\mathsf{s}) + \mathsf{g}(\mathsf{s}) {\cdot} \xi$ ## **Definitions** ■ Central moment - $\mu_n = E((X - \mu)^n)$