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Overview

 Stochastic processes

 Extracellular recording

 Point processes

Modeling our measurements

 Repetition of the same experiment will not lead 
to the exact same response.

 Example: The spike train of a neuron in 
response to stimuli is different…

 Typically we would like to know:
 When is something unexpected?
 What are the “normal” values?

 Thus, analyzing a sequence of measurements 
requires modeling of the underlying process.
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Stochastic process - definition

 Stochastic – (1) Involving chance or 
probability (2) Random (3) Non-deterministic
(Merriam-Webster & Wikipedia).

 Stochastic process - an indexed collection of 
random variables {Xi}, where the index i
ranges through an index set I, defined on the 
probability space (Ω, P). The index set may 
be discrete or continuous (Wikipedia).

 A stochastic process defined over the time 
interval domain is called a time series.

 A stochastic process defined over the space 
interval domain is called a random field.

Stochastic process - examples

 Example 1: A continuous time series of 
the measured temperature in Bar-Ilan.

 Example 2: A discrete time series of 
whether any rain fell in Bar-Ilan during a 
specific day.  

 Example 3: A discrete stochastic 
process (not a time series) of the heights 
of people entering the Gonda building.

Stationary processes

 A (strictly) stationary process is a stochastic 
process in which the probability density function 
(pdf) of some random variable X does not 
change over indexes (such as time or position).

 A weak or wide-sense stationary (WSS) process 
only require that 1st and 2nd moments do not 
vary with respect to time.
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Stationary processes - examples

 Stationary example: Sequence of L/R button 
presses. Each press has a 90% probability of 
being in the same direction as its predecessor. 
 Stationary despite strong temporal covariance.

 Non-stationary example: Amount of rainfall for 
each day of the year. 
 In many cases long term changes may be removed 

using de-trending techniques.

Ergodicity

 If averaging over time and space are equal the 
process is ergodic.

 Ergodicity is usually described in terms of 
properties of an ensemble of objects.

 Example: Finding out how people spend their 
spare time. Sampling one person over 1000 
days would yield the same result as sampling 
1000 people once in an ergodic system.

Reading material:
http://news.softpedia.com/news/What-is-ergodicity-15686.shtml

Ergodic & stationary processes

 In an ergodic process, the following are equal

 Averaging across repeated trials 

 Averaging across time for a single trial

 An ergodic process is always stationary, the 
reverse may not be true

 A stationary process is ergodic if samples that 
are far enough in time are independent 
(asymptotic independence).
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Overview

 Stochastic processes

 Extracellular recording

 Point processes

Recommended reading: 
R. Lemon, Methods for neuronal recording in conscious animals, 1984, Chapter 2

Formation of extracellular potential I

 Different membrane potentials of the neuron 
lead to flow of current within the neuron which 
is matched by an extracellular return current.

Sink – Active area, current flows into the neuron
Source – Inactive region, current flow out of the neuron.

Formation of extracellular potential II

Axon – Triphasic shape (+/-/+)
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Somatic extracellular spike shape

 Soma – Biphasic 
shape (-/+),
 Negative due to flow 

from the initial 
segment

 Positive due to flow 
to dendrite.

 Magnitude is 
proportional to 
surface area divided 
by the distance.

Decay of extracellular signal

Extracellular recording I
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Extracellular recording II
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Extracellular recording III

0 1 2 3 4
-300

-200

-100

0

100

200

300

Time (ms)

V
o

lta
g

e
 ( 

V
)

Multiple units

 The electrode detects multiple 
neurons (also called units) which 
are close to its tip.

 The signals differ in:
 Amplitude -dependent on cell size

and distance.
 Phase shape - depends on direction 

to soma, axon & dendrites.
 Temporal shape - dependent on cell 

type.

 Spikes from the same neuron also 
vary significantly due to noise, 
bursts, drift of electrode, etc..
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Sorting multiple units

Multiple units

 Multiple single units

 Multi-unit activity

 Local field potential

Continuous signal  spike trains I
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Analog data

0 10 20 30 40 50 60 70 80 90 100

Neuron 1

0 10 20 30 40 50 60 70 80 90 100

Neuron 2
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• Intracellular soma

• Extracellular

• Intracellular axon

Continuous signal  spike trains II

Spike trains

 Transformation from a continuous 
recording to a series of discrete 
timestamps.

 Is all the information contained in the 
timing of the spikes?

 What are we losing?
 Spike shapes
 Non spiking activity
 Sub-threshold activity

Overview

 Stochastic processes

 Extracellular recording

 Point processes
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Time series & Point processes

 Continuous time series
 Electroencephalogram (EEG)
 Electromyogram (EMG)
 Intracellular potential
 …

(Note: “Continuous” is the common term but is misleading 
since it applies to both discrete and continuous in time)

 Stochastic point processes
 Neural action potentials
 Heart beats 
 Behavioral events
 …

Delta functions (reminder)

 Dirac’s delta function

 Kronecker’s delta function
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Point process

 The spike train is represented by the sum of 
Dirac’s delta functions at its firing times (ti)

 Point processes are unitary events in time. 
The actual values in time are meaningless.
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Properties of a single spike train

 Firing rate

 Response to events

 Firing pattern

 Exact timing

 Entropy

 …

The neural transformation

Sensors Spike Generatorx(t) r(t) ( )t

x(t) = external signal

r(t) = spike rate

= actual spikes

We observe         , and we need to estimate r(t) 

(eventually we will use this to estimate x(t))

( )t

( )t

Firing rate definition

 There are actually quite a few 
definitions to firing rate
 r – rate over the whole period T also called 

spike count rate

 <r> - rate averaged over all the trials, also 
called average firing rate

 r(t) – trial average rate over a short period 
(∆t0)

and they are constantly mixed…
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Δt = 100 ms

Firing rates – number of spikes

0                         1                        2                         3
Time (s)

From: Theoretical neuroscience  / Dayan & Abbott

Convolution

 Convolution is an operator which takes two 
functions f and g and produces a third function 
that represents the overlap between f and a 
reversed version of g.

 Continuous:

 Discrete:
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Convolution examples

 Convolution of a box function

 Convolution of a spiky function

(From: www.wikipedia.org, Brian Amberg)

Convolution & Moving average

 A convolution is a general moving average when 
the averaging function integral is 1. 

 In that case it functions as a smoothing function.

 When the averaging function is square it will 
function as regular mean using overlapping bins.

 Non-square functions enable emphasis of parts 
of the window.

Sliding rectangular window
Δt = 100 ms

Sliding Gaussian window
σt = 100 ms

Firing rates – sliding windows
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Firing rates - causal windows

Temporal averaging with windows is non-
causal. A causal alternative is w(t)=[2 t e- t]+

Sliding causal window
1/α = 100 ms

Smoothing & Convolution

 Smoothing and convolution pitfalls
 Introduces spurious correlations over time

 Hidden assumption about smoothness of 
the external sensory or motor data

 Edge effects: what happens at the start 
and end of the data?

 Phase lag: peaks of smoothed data may 
occur later than the peaks in the original 
data.  True for non-symmetric kernels and 
all causal filters

Tuning curves

 r() can be a function of something other than time. e.g. 
r(angle) if the rate varies with direction of hand movement

 r(x) will still be time-varying if the argument x changes 
with time as x(t).  It can also change dependence on x, if  
r = r(x,t).

 Describes the "tuning" of the neuron. x can be a scalar, 
vector, or function (pattern)

 A tuning curve is a model for the neuron's behavior, and 
is always an approximation since neurons are likely to 
have multiple inputs and respond to multiple internal and 
external variables.  
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Sensory tuning curves

 For sensory 
neurons, the firing 
rate depends on the 
stimulus s

 Extra cellular 
recording V1 
monkey

 Response depends 
on angle of moving 
light bar

 Average over trials 
is fitted with a 
Gaussian
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Motor tuning curves

Extra cellular recording of monkey primary motor 
cortex M1 in arm-reaching task. Average firing rate is 
fitted with 0 max 0 max( ) ( ) cos( )r s r r r s s    

Spike count variability

 Tuning curves model average behavior. 

 Deviations of individual trials are given 
by a noise model.
 Additive noise is independent of stimulus 

r(s) = f(s) + 
 Multiplicative noise is proportional to 

stimulus 

r(s) = f(s) + g(s)·
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Definitions

 Probability density function - a 
function that represents a probability 
distribution in terms of integrals.

 Moment -

 Central moment - (( ) )n
n E X  

( ) ( )n
n x c f x dx
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