Assignment 02

1) Stochastic Point Process

The file 'ex2Question1.mat' contains spike times of a stochastic point process. Spike times are in seconds.
a) Calculate the Fano Factor (FF) and the Coefficient of variation of the interspike intervals (Cv) using 1 second window.
b) Calculate FF \& Cv using 25 msec window.

Explain the differences.
c) Would you suspect the given spike train is an outcome of a Poisson stochastic process? Explain.

2) Properties of a single Poisson process with refractory period

Generate a spike train for 90 seconds using a Poisson process with a refractory period, in 1 millisecond bins.
The baseline firing rate rate (r_{0}) should be 55 spikes/second.
The refractory period should be simulated as followed: after each spike, set an absolute refractory period for 4 ms (i.e. $r(t+1)=r(t+2)=r(t+3)=r(t+4)=0$, where t (in $m s)$ is the time of the spike), and a recovery period of 7 ms , in which the firing rate ($r_{\text {reff }}$) increases linearly from 0 back to r_{0} (i.e. $r(t+5)=\left(r_{0}\right.$ *1/7) , $\mathrm{r}(\mathrm{t}+6)=\left(\mathrm{r}_{0} * 2 / 7\right), r(\mathrm{t}+7)=\left(\mathrm{r}_{0} * 3 / 7\right)$, etc.) Using Matlab, calculate and plot the following:
a) TIH -Time interval histogram.
b) Survivor function.
c) Hazard function.
d) Autocorrelation (maximal offset $\pm 100 \mathrm{~ms}$) - normalized to rate.

Explain the graphs based on the discharge properties if the neuron. Also explain the normalization of each plot.

3) Autocorrelation

The rate function of a non-homogeneous Poisson-process neuron is:

$$
r(t)=\left\{\begin{aligned}
100 \text { spikes } / \text { s, } & \bmod (t, 50)<25 \\
0 \text { spikes } / s, & \text { Otherwise }
\end{aligned}\right.
$$

The neuron is sampled at 1000 Hz [samples/sec] and recorded for 20 seconds.
a) Draw the spike count autocorrelation function of the neuron.
b) Draw the rate-normalized autocorrelation function.
-Remember titles, X and Y labels, units and key values at points of interest (max / min points, etc.) -Solve analytically, no Matlab in your solution please. (It may be useful to validate your results/answer using Matlab.)

4) Extracting the autocorrelation from the Hazard function

Given the following hazard function:

a) Sketch the autocorrelation function ± 1 second.
b) Is the neuron Poisson, Regular, Bursty? Explain your answer

Notes:

- Solution of questions 3 and 4 should not include Matlab code. You can use Matlab in order to validate your answers and acquire intuition.
-"Draw" means draw by hand an exact solution and indicate exact values for points of special interest (e.g. min/max). Specify accurate calculation results.
- "Sketch" means draw by hand a coarse solution when you should provide values for points of special interest ($\mathrm{min} / \mathrm{max}$). Values can be either accurate calculation results is possible and easy to extract. Otherwise, provide rough estimation.

