
1

Introduction to Programming
2017/18

Files & I/O

Izhar Bar-Gad
Room: 408 Phone: 7141 Email: izhar.bar-gad@biu.ac.il

Week 12: Files & I/O

 MATLAB files

 High level access to files

 Low level access to files

Basic terms

 A file in a computer system is a stream
(sequence) of bits stored as a single logical
unit, typically in a file system on a disk.

 Input/output, or I/O, is the collection of
interfaces that different functional units of an
information processing system use to
communicate with each other.

 Thus, this lesson deals with the ways that
MATLAB interacts with the rest of the world,
primarily through files.

2

Accessing MAT files

 By far, the most common file for storage of
data is the “.mat” file type.

 In the MATLAB context, data is equivalent to
variables.

 Reading and writing files may be performed
through the load & save commands.

Reading & writing MAT files

 Saving variables to disk
Syntax save(‘fileName’,’parm1’,parm2’,…)

or save fileName parm1 parm2

 Loading variables from disk
Syntax load(‘fileName’,’parm1’,parm2’,…)
or load fileName parm1 parm2

 Both formats are usable.
 The first format is recommended.

 More consistent with function calls.
 Enable flexibility in the variable names.

Querying MAT files

 Looking at the file contents
Syntax whos –file fileName

or who –file fileName

 Checking for the location of a file
Syntax which fileName

(note: fileName must have the “.mat” suffix)

3

Other file formats

 Manipulating “.mat” files is simple.
 These files have their disadvantages

 Not text based and not easily readable.
 Not very efficient in some cases.

 Despite their disadvantages they are usually
the preferred methods of storing data.

 Unfortunately, in many cases we have to
export data to other programs or import data
files created by other program.

External formats

 MATLAB supports both high and low level
functions for accessing other formats.
 Few formats with special “high level” functions.

 Generic “low level” support for all binary files.

 For a full list of functions: help iofun

 Supported “high level” file formats:
 Delimiter separates – dlmread, dlmwrite

 Excel spreadsheet – xlsread, xlswrite

 Images – imread, imwrite

 …

 For a full list: help fileformats

High level access: example
Excel files

Syntax: [numeric, text, raw]=xlsread(file);

Example:

>> [n, t, r] = xlsread(‘myfile.xls’)

n =
34 187
28 160

t =
'Name ' 'Age' 'Height'
'XXX' '' ''
'YYY' '' ''

r =
'Name ' 'Age' 'Height'
'XXX' [34] [187]
'YYY' [28] [160]

Name Age Height
XXX 34 187
YYY 28 160

myfile.xls

4

High level access: example
Delimited (numeric) files

Syntax: result = dlmread(file, delimeter);

Example:

>> r = dlmread(‘myfile.txt’,’,’)

r =
99 100 97
53 40 65

myfile.txt

99, 100, 97
53, 40, 65

Low level access to files I

 In addition to high level access to specific files,
access is given using low level functions.

 High level access is unrelated to the actual
format of the data in the file.

 Low level access is sensitive to the “physical”
representation of the data.

Low level access to files II

 Low level functions are typically more complex
but give general access to files.

 The low level functions for MATLAB I/O serve
both files and devices and resemble the
functions used by other languages.

 The basis for the functions are accessing
ASCII data or binary data.

5

Opening a file

 The file must first be opened with the required attributes.
Syntax: fid = fopen(fileName, permissions)

 Success: a positive identifier (typically >2).
 1 is standard output & 2 is standard error

 Failure: a negative (-1) identifier.

 Permissions – mode of access to the file
r – read
w – write (& create)
r+ – read & write (no creation)
a – append
…

Closing a file

 The file must be closed. Otherwise it will stay
locked and will be problematic to access.

Syntax: status = fclose(fid)

 Status is 0 upon success and -1 upon failure.

Handling text files

 Text files are written using 1 byte per
character.

 Most characters are printable with a few
exceptions for control characters.

 Thus, text files are readable to humans.
 The encoding of the character is the

transformation between the binary value of the
byte to the displayed character.

 ASCII (American Standard Code for
Information Interchange) – the most common
character encoding for describing text on a
computer

6

String formats

 Special characters are supported:
 \n - New line
 \t - Horizontal tab
 \\ - Backslash
 \'' or '' (two single quotes) - Single quotation mark

 Example:
‘What will ‘’this’’\nformat\tlook like\n’

What will ‘this’
format look like

Text based reading

 fgets & fgetl read lines from a text (ASCII) file with and
without the line terminator respectively.

Syntax: line = fgetl(fid)
 line is -1 upon end of file (eof).

Example:
d=fopen(‘a.txt');
while (1)

line = fgetl(fid);
if ~ischar(line)

break;
else

disp(line)
end

end
fclose(fid);

ASCII vs. Binary representation

 The easiest explanation is through an example, of storing
many numbers in the range of 0-255.

 We can save each one as three textual digits, each digit
occupying one ASCII encoded byte for a total of three bytes
For example: 210  00110010 00110001 00110000

 We can save each one as a 8 bits encoding the number,
each number will occupy one byte.
For example: 210  11010010

 ASCII – Readable by humans, (mostly) machine independent,
takes more space

 Binary – Efficient, machine dependent, not easily accessible by
human.

(Use dec2base & base2dec for easy conversion between bases)

7

Binary data

 Unlike text based access, the representation
of the data is crucial.

 Integer vs. floating point

 Signed vs. unsigned

 Number of bytes used per variable

Binary representation of data

 The basic binary representations are:

 Character
 Elements of strings.
 Uses 1 byte per element.

 Integer – whole numbers (-min, .., -1, 0, 1, …, max)
 Signed or Unsigned
 Uses 1-8 bytes per element.
 Uses 2-16 for complex elements.

 Floating point – real numbers
 Single – Uses 4 bytes per element (8 for complex)
 Double – Uses 8 bytes per element (16 for complex)

Binary data example

 The range of a signed 1 byte integer is
[-128,127]

 The range of an unsigned 2 byte integer is
[0, 65535]

 Double precision floating point
Max: 1.7976931348623157 x 10308

(-1)Sign * 2(Exponent - ExponentBias) * 1.Mantissa

8

Binary reading and writing

 fread - Reading binary info
Syntax: outVar = fread(fid, numElems, precision)

 fwrite – Writing binary info
Syntax: count = fwrite(fid, outVar, precision)

 Reasons for using
 Saves space in file.
 Unfortunately many files you get will look like this.

 Reasons for not using
 Unreadable to the human eye.
 Extremely hard to debug.

Navigating within a file

 fseek – move within the file
Syntax: fseek(fid, offset, origin)

 offset
 negative  move backwards
 positive  move forwards

 origin
 ‘bof’ or -1  beginning of file
 'cof' or 0  current position in file
 'eof' or 1  End of file

 status
 0 is success & -1 is failure

 ftell – find position within the file
Syntax: position = ftell(fid)

Additional material

9

String formats

 Formatting is a way of generating a text strings
based on fixed parts and variable parts.

 How do I use the following input variable …
stName = [‘izhar ’ ‘yaara’ …];

stGrade = [67 98 …];

 To generate the following output:
Student “izhar ” got 67 on the test

Student “yaara” got 98 on the test

…

String format problems

 How do I define where the variables should be
placed?

 How do I define the way the variable will be
printed?

 How do I deal with special characters?

String formats I

 Defining templates for strings is performed using the “C”
based formatting.

 Variables are define using multiple parts
 The sign %
 Flags (optional)

 + (add a sign)
 0 (pad with zeros)
 …

 Precision and width (optional)
 digit – width of the variable
 .digit – precision of a variable

 Conversion (required)
 c – character
 f – floating point
 e – exponential notation
 s - string
 …

10

Formatted writing

 Writing a formatted string to a file is done
using fprintf

Syntax: fprintf(fid,formatString, var1, var2, …)

 Example:
>> a = [5.324 -1.234];

>> fprintf(1,’The number\n\tis %+3.2f\n’,a);

 Will print:
The number

is +5.32

The number

is -1.23

Formatted reading

 Reading a formatted string from a file is done using fscanf
Syntax: outVar = fscanf(fid,formatString, maxNum)

 Example:

Given a file a.txt containing:
read 4.5 write 3.2
read 2.1 write 8.79

>> ff = fopen(‘a.txt’);
>> a=fscanf(ff,'read %f write %f\n')

a =
4.50000000000000
3.20000000000000
2.10000000000000
8.79000000000000

>> fclose(ff);

