ar Bar-Gad

141 Email: izhar.bar-gad@b

Week 12: Files & /0

= MATLAB files

= High level access to files

= Low level access to files

Basic terms

= A file in a computer system is a stream
(sequence) of bits stored as a single logical
unit, typically in a file system on a disk.

= Input/output, or I/O, is the collection of
interfaces that different functional units of an
information processing system use to
communicate with each other.

m Thus, this lesson deals with the ways that
MATLAB interacts with the rest of the world,
primarily through files.

Accessing MAT files

= By far, the most common file for storage of
data is the “.mat” file type.

= In the MATLAB context, data is equivalent to
variables.

m Reading and writing files may be performed
through the load & save commands.

Reading & writing MAT files

= Saving variables to disk
Syntax save(‘fileName’,’'parm1’,parm2’,...)
or save fileName parm1 parm2

= Loading variables from disk
Syntax load(‘fileName’,’parm1’,parm2’,...)
or load fileName parm1 parm2

= Both formats are usable.
= The first format is recommended.
e More consistent with function calls.
e Enable flexibility in the variable names.

Querying MAT files

= Looking at the file contents
Syntax whos —file fileName
or who —file fileName

m Checking for the location of a file
Syntax which fileName
(note: fileName must have the “.mat” suffix)

Other file formats

= Manipulating “.mat’” files is simple.
= These files have their disadvantages

e Not text based and not easily readable.
e Not very efficient in some cases.

= Despite their disadvantages they are usually

the preferred methods of storing data.

= Unfortunately, in many cases we have to

export data to other programs or import data
files created by other program.

External formats

MATLAB supports both high and low level
functions for accessing other formats.
e Few formats with special “high level” functions.
e Generic “low level” support for all binary files.

For a full list of functions: help iofun

Supported “high level” file formats:

e Delimiter separates — dimread, dimwrite
e Excel spreadsheet — xlIsread, xIswrite

e Images — imread, imwrite

For a full list: help fileformats

High level access: example
Excel files

Syntax: [numeric, text, raw]=xlIsread(file);
Example:

>>[n, t, r] = xIsread(‘myfile.xls’)

myfile.xls
n= Name Age Height
34 187 XXX 34 187
28 160 YYy 28 160

t=
‘Name' 'Age' 'Height'
XXX " "
‘Name' 'Age' 'Height'

XXX [34] [187)
YYY' [28] [160]

High level access: example
Delimited (numeric) files

Syntax: result = dimread(file, delimeter);

Example: myfile.txt
>>r = dimread(‘myfile.txt’,’,") gg 130627
r=

99 100 97

53 40 65

Low level access to files |

= In addition to high level access to specific files,
access is given using low level functions.

= High level access is unrelated to the actual
format of the data in the file.

m Low level access is sensitive to the “physical”
representation of the data.

Low level access to files Il

= Low level functions are typically more complex
but give general access to files.

m The low level functions for MATLAB I/O serve
both files and devices and resemble the
functions used by other languages.

= The basis for the functions are accessing
ASCII data or binary data.

Opening a file

= The file must first be opened with the required attributes.
Syntax: fid = fopen(fileName, permissions)

= Success: a positive identifier (typically >2).
e 1is standard output & 2 is standard error
= Failure: a negative (-1) identifier.

= Permissions — mode of access to the file
r—read

w — write (& create)

r+ —read & write (no creation)

a— append

Closing a file

= The file must be closed. Otherwise it will stay
locked and will be problematic to access.

Syntax: status = fclose(fid)

m Status is 0 upon success and -1 upon failure.

Handling text files

m Text files are written using 1 byte per
character.

= Most characters are printable with a few
exceptions for control characters.

m Thus, text files are readable to humans.

= The encoding of the character is the
transformation between the binary value of the
byte to the displayed character.

m ASCII (American Standard Code for
Information Interchange) — the most common
character encoding for describing text on a
computer

String formats

m Special characters are supported:
e \n-New line
o \t - Horizontal tab
e \\ - Backslash
e \"or" (two single quotes) - Single quotation mark
= Example:
‘What will “this"\nformat\tlook like\n’
9
What will ‘this’
format look like

Text based reading

s fgets & fgetl read lines from a text (ASCII) file with and
without the line terminator respectively.

Syntax: line = fgetl(fid)
= line is -1 upon end of file (eof).

Example:
d=fopen(‘a.txt');
while (1)
line = fgetl(fid);
if ~ischar(line)
break;
else
disp(line)
end
end
fclose(fid);

ASCII vs. Binary representation

= The easiest explanation is through an example, of storing
many numbers in the range of 0-255.

= We can save each one as three textual digits, each digit
occupying one ASCII encoded byte for a total of three bytes
For example: 210 - 00110010 00110001 00110000

= We can save each one as a 8 bits encoding the number,
each number will occupy one byte.
For example: 210 = 11010010

= ASCII — Readable by humans, (mostly) machine independent,
takes more space

= Binary — Efficient, machine dependent, not easily accessible by
human.

(Use dec2base & base2dec for easy conversion between bases)

Binary data

= Unlike text based access, the representation
of the data is crucial.

= Integer vs. floating point
= Signed vs. unsigned
m Number of bytes used per variable

Binary representation of data

= The basic binary representations are:

e Character
= Elements of strings.
= Uses 1 byte per element.
e Integer — whole numbers (-min, .., -1, 0, 1, ..., max)
= Signed or Unsigned
= Uses 1-8 bytes per element.
= Uses 2-16 for complex elements.
e Floating point — real numbers
= Single — Uses 4 bytes per element (8 for complex)
= Double — Uses 8 bytes per element (16 for complex)

Binary data example

= The range of a signed 1 byte integer is
[-128,127]

= The range of an unsigned 2 byte integer is
[0, 65535]

= Double precision floating point
Max: 1.7976931348623157 x 10308

152 bits)

S (11 iy
W ponem
I Y)

T T T T T T]
aR 8

B o index)

(+1)Sian * 2(Exponent - Exponentsias) * 1 Mantissa

Binary reading and writing

= fread - Reading binary info
Syntax: outVar = fread(fid, numElems, precision)

m fwrite — Writing binary info
Syntax: count = fwrite(fid, outVar, precision)

= Reasons for using

e Saves space in file.

e Unfortunately many files you get will look like this.
= Reasons for not using

e Unreadable to the human eye.

e Extremely hard to debug.

Navigating within a file

n fseek — move within the file
Syntax: fseek(fid, offset, origin)
o offset
= negative > move backwards
= positive > move forwards
e origin
= ‘bof’ or -1 > beginning of file
= 'cof or 0 - current position in file
= ‘'eof or 1> End of file
e status
= 0is success & -1 is failure
m ftell — find position within the file

Syntax: position = ftell(fid)

Additional material

String formats

= Formatting is a way of generating a text strings
based on fixed parts and variable parts.

= How do | use the following input variable ...
stName = [lizhar ' ‘yaara’ ...];
stGrade = [67 98 ...];

= To generate the following output:
Student “izhar ” got 67 on the test
Student “yaara” got 98 on the test

String format problems

= How do | define where the variables should be
placed?

= How do | define the way the variable will be
printed?

= How do | deal with special characters?

String formats |

= Defining templates for strings is performed using the “C”
based formatting.

= Variables are define using multiple parts
e The sign %
e Flags (optional)
= + (add a sign)
= 0 (pad with zeros)
.
e Precision and width (optional)
= digit — width of the variable
= _digit — precision of a variable
e Conversion (required)
= - character
u f—floating point
= e — exponential notation
= s -string
.

Formatted writing

= Writing a formatted string to a file is done
using fprintf
Syntax: fprintf(fid,formatString, var1, var2, ...)

= Example:
>>a = [5.324 -1.234];
>> fprintf(1," The number\n\tis %+3.2f\n’,a);

= Will print:
The number
is +5.32
The number
is-1.23

Formatted reading

= Reading a formatted string from a file is done using fscanf
Syntax: outVar = fscanf(fid,formatString, maxNum)

= Example:

Given a file a.txt containing:
read 4.5 write 3.2
read 2.1 write 8.79

>> ff = fopen(‘a.txt’);
>> a=fscanf{(ff,'read %f write %f\n")

a=
4.50000000000000
3.20000000000000
2.10000000000000
8.79000000000000

>> fclose(ff);

10

